
2021.2

Developer Guide

WorkZone for Office 2021.2

2

Developer Guide

Contents

Developer Guide for WorkZone for Office 2021.2 4

What's new 6

Get started 9

Customizing WorkZone for Office 10

Component overview 10

About SJStyles 10

Customize view and dialog boxes 13

Customize content controls 19

XML files structure 24

Install customizations 28

Working with macro-enabled templates 32

Create macro-enabled templates 32

Macro interface members 35

API 38

API integration 38

Merge API 40

Terms and conditions 45

3

WorkZone for Office 2021.2

Developer Guide for WorkZone for
Office 2021.2

l View PDF version

Most used topics

l Customize view and dialog boxes

l Install customizations

l Create macro-enabled templates

Useful links

l XAML Syntax In Detail

l XAML Overview (WPF)

Related product documentation

4

http://msdn.microsoft.com/en-us/library/ms788723.aspx?sess=bbf2b905f19c1697333c9774e2f2e0a8
http://msdn.microsoft.com/en-us/library/ms752059.aspx?sess=bbf2b905f19c1697333c9774e2f2e0a8

Developer Guide

l WorkZone for Office User Guide

l Installation Guide for WorkZone

WorkZone links

l WorkZone documentation

l WorkZone support

l WorkZone website

l WorkZone portal

5

https://docs.workzone.kmd.net/2021_2/en-us/Content/WZfO_UserGuide/Home.htm
https://docs.workzone.kmd.net/2021_2/en-us/Content/WZ_InstallGuide/Home.htm
https://docs.workzone.kmd.net/
http://support.kmd.dk/
https://www.kmd.dk/loesninger-og-services/loesninger/enterprise-information-management
https://workzone.kmd.net/

WorkZone for Office 2021.2

What's new

2021.2

No changes in this release.

2021.1

No changes in this release.

2021.0

No changes in this release.

2020.3

l The AccessToken and UseOAuth parameters have been added to the Build-
erParameters to support the OAuth2 authentication. If you get Authentic-
ationException when using the BuildAsync method in the OAuth2 mode, it
means that the current access token has expired and another one should be
obtained. See Merge API.

l Ready, startDocument, and exportToExcel methods are no longer used as
the available API methods. The new initialize method has been introduced.
The openDocument method has been replaced by the openEmail one. See Avail-
able API methods.

2020.2

No changes in this release.

2020.1

No changes in this release.

2020.0

No changes in this release.

2019.3

New macro interface members have been introduced:

6

Developer Guide

l Before_Merge

l After_Merge

l WorkZone_BeforeMerge

l WorkZone_AfterMerge

Use them to notify custom methods when the merging starts and ends, and, optionally, to can-
cel the merging. See Macro interface members.

2019.2

No changes in this release.

2019.1

l The ICustomXmlPartBuilder interface has been extended with another BuildA-
sync method. The new method contains caseID as a parameter and allows to
retrieve case ID directly from the method. See Merge API.

2019.0

No changes in this release.

2018.2

No changes in this release.

2018.1

No changes in this release.

2018

l Merge API methods have been added and described. Now you can customize con-
tent controls and merge them with information by using public API.

l New settings have been added to configure content controls. The settings for the
merge are the following: <linkTemplate> with attributes href and
queryForLocalData; internal in <property>; addressContext in
<staticData> and <link>. The settings for repeating section are the following:
repeatable in <dynamicMenu>, group in <staticData> and additionalKey in
<dynamicData>.

l Number of run-time dependencies has been decreased from 6 to 4.

2017

7

WorkZone for Office 2021.2

l REST API methods have been added and described. Use them to integrate your sys-
tem with the WorkZone for Office functionality.

l You can customize content controls for your WorkZone for Office installation. To do
this, you need to learn the structure of the XML files and follow the example.

l You can make the Role field on the Document registration pane required.

2016 R2

l The standard value set for WorkZone for Office Server has been updated. See the
Standard value set in WorkZone Office Server installer.

8

Developer Guide

Get started
The forms of WorkZone for Office can be customized in several ways. You can bind controls
to WorkZone Content Server fields or to the properties in WorkZone Content Server items.

Basic knowledge of XAML and of the WorkZone Content Server data model are the pre-
requisites for performing customization.

The following sections introduce you to the customization of WorkZone for Office:

l An overview of components used for customization.

l The location of files and how to add and remove fields.

l Instructions on how to install customized XAML and load ColumnSetDefinitions.

9

WorkZone for Office 2021.2

Customizing WorkZone for Office

Component overview

The registration panes and dialog boxes in WorkZone for Office are implemented using
XAML.

A dialog box or a registration pane is defined by two types of components:

l The XAML file that describes the layout of the form and data bindings for each field.

l The ColumnSetDefinitions file that contains all data presented in the form.

To facilitate the binding between the XAML controls and the data columns, a set of ‘Sj’ styles
exists. The SjStyles include styles for most WorkZone Content Server field types. Fur-
thermore, the SjStyles set up bindings between the attributes of the XAML control and data dic-
tionary attributes for the corresponding data column.

Important: XAML and SjStyles are carefully constructed to provide the desired func-
tionality and appearance. So, even though it is technically possible to replace the
XAML completely, KMD recommends that you use the existing XAML and SjStyles to
the greatest extent possible.

About SJStyles

The simplest way to work with standard bindings is to use styles. SJStyles are used to cus-
tomize XAML controls. There are defined styles for the most common control types, but you
can also define your own style, if needed. The predefined controls start with “Sj”.

“SJ” controls describe binding rules for the most commonly used controls. These are:

l SjTextBox

l SjComboBox

l SjTextBlock

10

Developer Guide

l SjLabel

l SjDatePicker.

For the search forms, the following styles have been defined:

l SjTextBoxSearch

l SjComboBoxSearch

l SjAutoCompleteControl (also used in DocumentRegistrationPane).

The major difference between them is that the search form styles do not validate the input.

Generalized SJStyles

The generalized SjStyles listed below are presented only in XAML forms. The SjStyles are
not available in XAML dialog boxes. Changing these styles in dialog boxes is possible only
by inheritance. However, you can add new controls with these styles.

l SjOfficeStyleTextBox – a text box that inherits the Microsoft Office color
scheme and has no binding. It is used as a basis for SjTextBox. It can be used dir-
ectly if no default binding is needed.

l SjTextBox – a text field. Attribute values are inherited from the data column.

l SjTextBoxSearch – is used on the search forms for regular text input. Does not val-
idate the input.

l SjComboBox – is used on the search forms for regular text input. Does not validate
the input.

l SjComboBoxSearch, SjFilterComboBox – a drop down field. Attributes values
inherited from the data column.

l SjGridComboBox – is used to select items inside the grid control.

l SjDatePicker – a date field with the date picker control attached. Attributes values
inherited from the data column.

You can configure date picker content control to use the long or short date format,
so that it uses the same format as the SjDatePicker. See Configurable elements.

l SjCaseClassAutoCompleteBox – is used for case class auto-complete text box.

11

https://docs.workzone.kmd.net/2021_2/en-us/Content/WZ_InstallGuide/Install/Office/Configure_office.htm#Configurable_elements

WorkZone for Office 2021.2

l SjAutoCompleteControl – is used on the search forms and in the Document
Registration pane to enable auto-complete behavior for Case Handler (officer)
and Responsible Unit (responsible_ou) fields.

Сustomizable SJStyles

Customizable SjStyles are presented in each XAML file. You can configure them according to
your needs.

l SjLabel – static text, used primarily for labels.

l SjTextBlock – a read-only text field.

Properties for SjAutoCompleteControl

l MinimumSearchLengthByCode – defines the minimum number of typed char-
acters needed to start the search. If this property is used, search is performed only by
initials. The default value is 2.

Important: This value should be lower than the value you assign to Min-
imumSearchLength.

l MinimumSearchLength – defines the minimum number of typed characters
needed to start the search. If this property is used, search is performed on any text
type (that is, in full text and initials). The default value is 3.

l LoadAllDataCommand – displays all items that match the typed text.

Important: This property must not be used together with LoadNex-
tDataCommand.

l LoadNextDataCommand – displays the first 50 items thatwhich match the typed
text. If there are more than 50 items, a scrollbar appears. If you scroll down, addi-
tional items are displayed.

12

Developer Guide

l ResolveItemValueAsPrimary – the value can be True or False.

l True: when the drop-down list is closed, the item containing initials that
match the typed text is selected automatically.

l False: when only one item is found, this item is selected automatically.
When several items are found, the selected item is then resolved as empty
(that is, the control is cleared).

Customize view and dialog boxes

The View settings of the registration pane and various dialog boxes in WorkZone for Office
are stored in the database as an XAML configuration.

View and change settings for dialog boxes and views

To see the views available in the database and (or) change your selected settings, you need
to execute the following query in SCANSQL or SQLPLUS:

SELECT*

FROM services_configuration

WHERE Module_name = 'Scanjour.Services.Office'

Below is the full list of customizable dialog boxes and views in WorkZone for Office:

l AddressSelectDialog

l CaseConfirmDialog

l CaseSearchDialog

l CreateCaseDialog

l DocumentRegistrationPane

l OutlookItemRegistrationDialog

l MultipleSavingCommonMetadataDialog

l FacetsSelectDialog

l FileClassSelectDialog

l FixedListDialog

13

WorkZone for Office 2021.2

l OutlookRecordSearchDialog

l PartiesSuggestionDialog

l RecipientSelectDialog

l RecordSearchDialog

l RecordSelectDialog

As views can contain language specific texts, separate versions of the views for each of the
supported languages are stored in the database. See About SJStyles.

ColumnSetDefinitions is an xml structure that defines which fields are available for the Office
Clients. This configuration is merged into the WorkZone Content Server data dictionary.

Important: You need to load the standard ColumnSet configuration used by WorkZone
for Office into the sd_datadict table manually. See Installation Guide for WorkZone.

Make a field required or non-required during the registration of the item

You can add values to the dialog boxes and views and make them required or non-required
during the item registration. This is relevant for the following dialog boxes and views:

l CreateCaseDialog

l DocumentRegistrationPane

l OutlookItemRegistrationDialog

l MultipleSavingCommonMetadataDialog.

1. Open the relevant XAML file.

2. Find the control with a field value that you want to make required or non-required.

3. To make a field required, you must add the following property to the control:
prop:ControlBehaviour.IsRequired="True".

-or-
To make a field non-required, you must remove its control from the XAML file.

4. Save your changes.

14

https://docs.workzone.kmd.net/2021_2/en-us/Content/WZ_InstallGuide/Upgrade/Upgrade_Office_server.htm

Developer Guide

Important: You can make a field required if it is defined as non-required on the server,
but you cannot make a field non-required if it is set as required on the server.

The procedure of making the Role field on the Document registration pane required differs.
You can find an example below:

How to make the Role field on the Document registration pane required

If you want users to always select a role when they add a new party on a case, you need to
complete the following changes in XAML:

1. Remove the following code:

<GridViewColumn Width="80" DisplayMemberBinding="{Binding

custom_label.Elab}"

prop:RangeColumnBehaviour.MinWidth="

{x:Static

consts:LayoutConstants.GridViewColumnMinWidth}"/>

2. Instead, insert the following code:

<GridViewColumn Width="80"

prop:RangeColumnBehaviour.MinWidth="{x:Static

consts:LayoutConstants.GridViewColumnMinWidth}">

<GridViewColumn.CellTemplate>

<DataTemplate>

<Grid>

<ComboBox DataContext="{Binding cus-

tom_label}"

Style="{DynamicResource ODataComboBox}"

IsEnabled="False" prop:Con-

trolBehaviour.IsRequired="True"/>

</Grid>

</DataTemplate>

</GridViewColumn.CellTemplate>

</GridViewColumn>

15

WorkZone for Office 2021.2

Configure the "ColumnSetDefinitions" file

To open and edit your ColumnSetDefinitions file, you must execute the following query in
SCANSQL or SQLPLUS:

SELECT*

FROM sd_datadict>

WHERE name = 'mwrp_columnsetdefinitions'

Customized versions of ColumnSetDefinitions and XAML are stored in a local project struc-
ture together with the scripts for loading the configuration to database.

Add a text field to the registration pane

You can add an extra field to the Registration pane.

1. Add the data column for the new field to ColumnSetDefinitions (if it is not present
already).

2. Add the XAML control for the field using the appropriate SjStyle, and bind it to the
relevant data column.

A text field example

In the example below, the Record Title field is defined as a simple text field.

The field name in data dictionary: record:title

ColumnSetDefinitions

In the ColumnSetDefinitions file, add the "title" column under the register "record"
and ColumnSet "Single":

<Scanjour>

<Settings>

<Services>

<Clients>

<Client name="OfficeService">

16

Developer Guide

<Registers>

<Register name="record">

<ColumnSets>

<ColumnSet name="Single">

<Column name="title"/>

</ColumnSet>

</ColumnSets>

</Register>

</Registers>

</Client>

</Clients>

</Services>

</Settings>

</Scanjour>

XAML

In Registration Pane.<language>.xaml, you can define a field using the SjTextBox styling
and binding to the column Record.title:

<TextBox x:Name="Title_field" DataContext="{Binding Record.-

title}"

Style="{DynamicResource SjTextBox}"

Margin="0" Width="Auto" Height="20" Tex-

tWrapping="NoWrap"

VerticalAlignment="Stretch"

HorizontalAlignment="Stretch" TabIndex="0"

HorizontalAlignment="Stretch" TabIndex="0"/>

In the example above, extra layout attributes have been added to the XAML control to specify
alignment, tab order, and text wrapping.

Add other field types

You can add all common ScanJour WorkZone Content Server field types using the pre-
defined SjStyles.

17

WorkZone for Office 2021.2

The example below shows how to add a drop-down list for a domain controlled field. In the
example, ‘Record Type’ is defined as a domain bound field.

Example

ColunmSetDef.

In ColumnSetDefinitions, the field is added like this:

<ColumnSet name="Single">

<Column name="record_type"/>

</ColumnSet>

XAML

In XAML, the field can be defined as follows:

<ComboBox x:Name="Doctype_combo" DataContext="{Binding Record.re-

cord_type}"

Style="{DynamicResource SjComboBox}"

Margin="0" Height="20" TabIndex="1" />

Remove a field from the registration pane

You can remove any field from the standard Registration pane. You only need to remove the
field from XAML; it is not necessary to remove the field from ColumnSetDefinitions.

Important: When you decide to remove a field from the Registration pane, you must
make sure that this field is not defined as a required field in the data dictionary. A
required field must always be present for input, unless it has a default value defined in
the data dictionary.

Use add-in customization

To write and use the customized add-ins, the following requirements must be met:

18

Developer Guide

l The AddIn assembly must have a reference to the WorkZone for Office assembly
Scanjour.Office.CustomizationContracts.

l The AddIn class must be inherited from the IAddIn interface.

l The AddIn class must have an AddIn attribute.

l All AddIns have the SetContext(HostContext hostContext) method. This
HostContext has WorkZone for Office methods that are accessible from the AddIn.

l All AddIns have the GetViewModel method, which is used to get a view model
(that is like a code behind the UI customization on XAML). The access to a view
model from XAML uses the XamlViewModelKey attribute from the AddInCon-
figuration.xml file.

l You can create an AddIn without a UI (a view model). To do this, you must return null
from'AddIn.GetViewModel()' and not provide an XamlViewModelKey attrib-
ute for the specific AddIn in the AddInConfiguration.xml file.

Customize content controls

About content controls

Content controls help users create templates in Microsoft Word. From a WorkZone point of
view, a content control represents a specific property of an entry. An entry is an object in
OData that refers to the database. Entries in OData are used to retrieve specific values from
the database.

When a user creates a template, the user inserts content controls by selecting menu items
from the Content properties group on the Insert tab in Word. The user then selects a doc-
ument in the Registration pane and clicks Merge. WorkZone substitutes each content control
with values from the database.

19

WorkZone for Office 2021.2

You can create sub-menus and define which menu items to be displayed in each category.
Content properties are divided into four categories:

l Document

l Case

l Document contact

l Case contact

Create a content control

This section describes step by step how to create a new content control called Entity updated
overrided. The content control represents the Entity updated property of the MruRecords
entry. To complete the creation, you need to create a reference to the database through OData
and add a new menu item that will appear in Word.

Define the content control in OData

1. Open the merge_odata_description XML file. To request a specific entry, create a
query to OData. Use the following example:

Example:

20

Developer Guide

<staticData id="E34FE056-129F-46D2-B7E7-

A20D91F9F47C" query="MruRecords?$filter=Value eq '

{recordId}' and User_Value eq '{record.officer}'">

where:

l staticData – use this element to request an entry.

l E34FE056-129F-46D2-B7E7-A20D91F9F47C – insert a
unique ID that will be used internally as a reference to the OData
entry. You may use any unique ID, however, it is recommended to
use a GUID generator to generate the ID.

l query – an OData request that retrieves the entry that you need. In
this example, it is a call to the MruRecords entry.

2. Within the staticData element, bind a content control with the required prop-
erty. To do this, you need to add and define the property element.

You may add as many properties as you need.

<staticData id="E34FE056-129F-46D2-B7E7-A20D91F9F47C"

query="MruRecords?$filter=Value eq

'{recordId}' and User_Value eq '{record.officer}'">

<property id="C5D4237E-2DEF-4D5A-B714-1F5CA88518F5" name-

e="EntityUpdated " />

</staticData>

where:

l property – use this element to request a property.

l E34FE056-129F-46D2-B7E7-A20D91F9F47C – insert a unique ID
that will be used internally as a reference to the property of the entry.

l name – specify property's name in OData.

Add content control to the user interface

21

WorkZone for Office 2021.2

3. Add a new menu item to the Word application. You can do this in the menu_
description XML file. Open the file and find a proper place for the new menu item.
The current example represents how to search for the Document category.

Expand to find a proper category for your menu item:

l <menu id="Case"> refers to Case.

l <menu id="Record"> refers to Document.

l <menu id="CaseParty"> refers to Case contacts.

l <menu id="RecordParty"> refers to Document contacts.

In the code source, the Document category refers to Record. Therefore, the new
sub-menu must be added under the <menu id="Record"> element:

<menu id="Mru">

<displayName xml:lang="en-GB">Mru test</displayName>

<displayName xml:lang="da-DK">Mru test</displayName>

<dynamicMenu id="Mru_Items">

<contentRefs>

<ref>E34FE056-129F-46D2-B7E7-A20D91F9F47C</ref>

</contentRefs>

</dynamicMenu>

</menu>;

where:

l menu – use this element to create a sub-menu.

l displayName – define a menu item name to be displayed in Word.

l dynamicMenu – use this element to create new menu items.

l ref – specify reference to the unique ID in the merge_odata_descrip-
tion XML file.

4. Optionally, define customized names for the new menu item and content control:

<label dataItemRef="C5D4237E-2DEF-4D5A-B714-

1F5CA88518F5">

<value xml:lang="en-GB">Entity updated overrided</value>

<value xml:lang="da-DK">Entity updated

22

Developer Guide

overrided</value>

</label>

where:

l label – specifies a customized name.

l dataItemRef – specifies a reference to the property of the entry from the
merge_odata_description XML file.

l xml:lang – is a localization parameter.

5. You can define how the content control must behave in Word when there is no
value. You have two options:

a. Keep the content control with no changes

b. Hide the content control

For option a, specify the unique ID of the entry within the <Rule rule-

e="Unchanged"> section. For option b, specify the unique ID of the entry within
the <Rule rule="Empty"> section.

Example:
<Rule rule="Unchanged"> <menuDataRefs>

<ref>E34FE056-129F-46D2-B7E7-A20D91F9F47C</ref>

</menuDataRefs> </Rule> <Rule rule="Empty">

<menuDataRefs> <ref>17EDE3E5-43D3-4B88-8E6E-

F336D916B916</ref> </menuDataRefs> </Rule>

where:

l ref – a reference to the unique ID in the merge_odata_descrip-
tion XML file.

Optionally, you can define which information should be included in the content
control title.

23

WorkZone for Office 2021.2

Example:

<cc dynamicMenuRef="Mru_Items"> <titleFormat xml:lang-

g="en-GB">(Document, Mru) {displayName}</titleFormat>

<titleFormat xml:lang="da-DK">(Document, Mru) {dis-

playName}</titleFormat> </cc>

where:

l dynamicMenuRef – specifies a reference to a menu item.

l TitleFormat – defines the content control title for each language.

l {displayName} – displays the name of the menu item that a user
can click.

XML files structure

There are two files that define the Merge-related functionality:

1. merge_odata_description.xml

2. menu_description.xml

If you want to edit an existing content control, you only need to customize the merge_
odata_description.xml file. To add a completely new content control, you need to cus-
tomize both files.

You can define the following:

l Content controls and their order in the menus in Word. See About content controls.

l Titles and placeholders of the content controls

l Merge functionality

merge_odata_description.xml

24

Developer Guide

This file describes data that is used for merging content controls and values from the data-
base. Merge of multiple entities is not supported, so make sure that you only select single
items in your queries. To edit the file, you must have knowledge about OData.

Elements and attributes:

l property – establishes mapping atom:content -> metadata:properties.

o internal – attribute for internal usage only. You can use it to display or
hide a content control in menu on UI. If the value is false, then content con-
trol is displayed. If the value is true, then content control is hided.

l link – establishes mapping to atom:link. Only atom:link with type=entry
is supported. The structure of link is the same as the structure of staticData.
This element is optional.

o query – relative OData request that contains any allowed OData system
query options. The only exceptions are select and expand options that
are built based on the property and link elements.

o addressContext – defines which rule must be applied to handle pro-
tected addresses locally and from Merge API. Available values for
addressContextare the following: CaseOfficer, CaseResponsibleUnit,
RecordOfficer, RecordResponsibleUnit, RecordParty, CaseParty.

l dynamicData – builds content control menus with items based on queries.

o key – use together with the query attribute to create an OData query. The
value of key is used as an ID of a menu item.

o additionalKey – use additionally to key if OData entities have complex
ID.

o value – use together with the query attribute to create an OData query.
The value of value is used as a label of a menu item.

l staticData – builds content control menus with items based on static properties.
The element reflects the OData atom payload for a specific entity. See also Naming
conventions and Atom format.

25

http://www.odata.org/documentation/odata-version-2-0/uri-conventions/
http://www.odata.org/documentation/odata-version-2-0/uri-conventions/
http://www.odata.org/documentation/odata-version-3-0/atom-format/

WorkZone for Office 2021.2

o href – mapping to atom:link.

o query – relative OData request that contains any allowed OData system
query options.

o group – groups related data for the repeating content, for example, Inform-
ation or Dates in the Contact menu.

o addressContext – defines which rule must be applied to handle protected
addresses locally and from Merge API. Available values for addressCon-
textare the following: CaseOfficer, CaseResponsibleUnit, RecordOfficer,
RecordResponsibleUnit, RecordParty, CaseParty.

l linkTemplate – child element of the staticData element and also reflects the
OData atom payload for a specific entity. This element is only used for ID 81E576F0-
FFAA-4229-8B46-2BEC4972B474 (Record staticData) and has an additional attrib-
ute.

o href – mapping to atom:link.

o queryForLocalData – describes OData query based on 'local' Record
data. The attribute refers to run-time dependency {record.<SOM field
name>}.

Run-time dependencies

During the merge, all run-time dependencies will be replaced with the correspondent values.
All dependencies are wrapped in '{}'. There are 4 types of dependencies:

1. {recordId} – ID of the document that a user merges.

2. {addressId} – ID of an address that belongs to the corresponding case or doc-
ument party.

3. {guid} – reference to a dynamicData ID or property ID in merge_

odata_description.xml.

4. {record.<SOM field name>} – where '<SOM field name>' is a direct doc-
ument field name. This dependency was created for the scenarios when a doc-
ument is not yet saved on a server.

26

Developer Guide

menu_description.xml

This file describes the UI elements. Use the file to make a new content control available to
users in Microsoft Word.

There are three main sections in the file:

1. Menus – customizes structure of menus, supertips, and screentips.

2. Labels – overrides the default menu item names and content control titles.

3. Content controls – customizes content controls.

Menus

Elements and attributes:

l menu – describes the static menu. You can create menu items by adding dynam-
icMenu elements. If you want to create a new sub-menu, you need to add another
menu element within this element.

l displayName – defines a menu name in Word.

l supertip and screentip – display additional information when users move the
mouse over the menu.

l dynamicMenu – adds menu items based on data from merge_odata_descrip-

tion.xml.

o contentRefs – a reference to the entries in merge_odata_descrip-
tion.xml.

o repeatable – identifies item in menu that must be used to repeat content
control. When repeat section is used around the content control, the menu
item with repeatable="true" is used.

Labels

Elements and attributes:

27

WorkZone for Office 2021.2

l label – overrides the default menu item label for a specific property that is defined in
merge_odata_description.xml.

o dataItemRef – specifies the reference to the property of an entry.

l value – specifies a language-specific label. It will also be used as a content control
placeholder.

o format – use this to format a value (optionally).

Content controls

Elements and attributes:

l NoEntityRules – defines the behavior of a content control if a user clicks Merge,
but no value exists for the content control.

o <Rule rule="Unchanged"> – adds the content control into this element
if you want to remain the content control in the user interface without
changes.

o <Rule rule="Empty"> – adds the content control into this element if you
want to hide the content control from the user interface.

l menuDataRefs – specifies a reference to a staticData and
link in the merge_odata_description.xml file.

l cc – defines which information to include in the content control title.

l dynamicMenuRef – specifies the name of a sub-menu or a menu item for which you
want to apply this title.

l titleFormat – specifies the content control title.

o {displayName} – displays the name of the menu item that a user has
clicked.

l holderFormat – optionally, specify the content control placeholder.

Install customizations

28

Developer Guide

About XAML files

The XAML files are loaded using the LoadData tool which is located in :

l Program Files (x86)\ScanJour\Captia\Modules\Services

–Or–
l Program Files\ScanJour\Captia\Modules\Services

For example, to load a modified Danish-language XAML for the task pane, execute the fol-
lowing command:

loaddata.exe /module_name="Scanjour.Services.Office" /name-

e=WordTaskPane /culture_name=da-DK /rank=50 /default=N /file-

e=<your file> /b=sjsysadm /a=<password for sjsysadm>

/database=<dnsname for your database>

Important:

l The default value must be set to J for an English-language file and to N for a
non-English language file.

l For the new XAML to take effect, you need to clear the client XAML cache.

Example of Resource String Used as XAML Label

Example from DocumentRegistrationPane.en-GB.xaml:

<UserControl.Resources>

<system:String x:Key=" LabelTitle">Title</sys-

tem:String>

<system:String x:Key="

LabelDocumentType">Document type</system:String>

The resource strings may then be used for labeling the XAML controls:

<Label x:Name="Title_label" Content="{StaticResource LabelTitle

}" Style="{DynamicResource LabelStyle}" />

29

WorkZone for Office 2021.2

In this way, all terms are kept together in the Resources section, and they are therefore easier
to translate.

The English version of the XAML file (for example, DocumentRegistrationPane.en-GB.xaml),
including the terms resources, is considered the master XAML.

Clear the XAML Cache

When WorkZone for Office is upgraded to a new version, all cached XAML files for current
user are automatically cleared upon the first start of a Microsoft Office application.

Cached XAML files are locally stored in:

%appdata%\Scanjour\Office\Xaml

To clear the cached XAML files manually, delete the Xaml folder.

Load ColumnSetDefinitions

ColumnSetDefinitions are ordinary WorkZone configuration deltas and should be loaded in
the usual way by using the loaddatadict.

loaddatadict /d:<dsn name for your database> /file:<your file>

/name:custom_ColumnSetDef /type_rank:80 /module_rank:1020

/rank:10

Note: This type is not suitable for very large domains (larger than 10.000 items).

Add a new field to ColumnSetDefinitions

The column set definitions for all standard WorkZone fields are defined by the server setup in
the configuration data ColumnSetDefinitions.

If you need to bind extra fields to XAML controls, you must add them to the Colum-
nSetDefinitions setup.

30

Developer Guide

If you need the standard data dictionary setup for a field, you only need to list the new field in
the module specific ColumnSetDefinitions.xml file.

Example:

<Column name=”medium” />

31

WorkZone for Office 2021.2

Working with macro-enabled tem-
plates

Create macro-enabled templates 32

Macro interface members 35

Create macro-enabled templates

You can create your own macro-enabled templates to set default values and to perform merge
and other important functions in WorkZone for Word.

Prerequisite: To use macro-enabled templates, you need to enable macros first.

Create a macro-enabled template

1. Open a new Microsoft Word document.

2. On the Developer tab in the Code group, click Visual Basic.

-Or-

Press Alt+F11.

A new Visual Basic document opens.

Example of an advanced document template

In this example, we are creating a macro-enabled template for a standard letter that prompts
the user to select a case for a document and then recipients. Finally, it merges all the inform-
ation into the document, after which the user can write the content of the letter.

32

Developer Guide

Public WithEvents App As Word.Application

Public IsScriptExecuted As Boolean

Private Sub App_DocumentChange()

If Not IsScriptExecuted Then

Dim addIn As COMAddIn

Set addIn = Application.COMAddIns("Scan-

jour.Office.WordAddIn")

IsScriptExecuted = True

If Not addIn.Object.IsMergedDocument Then

' <- Place your code here (START)

addIn.Object.SetDocumentMetadata "title", "Hello"

addIn.Object.SetDocumentMetadata "record_type", "NT"

addIn.Object.SetDocumentMetadata "record_grp", "INF"

addIn.Object.RegistrationPaneVisible = True

addIn.Object.ShowDocumentRecipientsDialog

addIn.Object.Merge

' <- Place your code here (END)

End If

End If

End Sub

Display the Developer tab

By default, the Developer tab is not displayed in the ribbon. To display it, you need to perform
the following steps:

1. Start Microsoft Word.

2. On the File tab, select Options. The Word Options dialog box displays.

3. In the categories pane, select Customize Ribbon.

4. In the Main Tabs list, select the Developer check box.

5. Click OK.

6. On the Developer tab that has just appeared, click Visual Basic.

7. In the Project pane, right-click the Microsoft Word Objects folder, and select

33

WorkZone for Office 2021.2

Insert > Class Module. A new Class1 class is added to the project tree.

8. Rename the Class1 module to ThisApplication.

Rename

1. Select the Class1 module in the project tree. A Properties pane is displayed
under the project tree.

2. In the (Name) field, set ThisApplication.

9. In the Project pane, double-click ThisApplication in the project tree. A new
ThisApplication document opens.

10. Enter a code in the ThisApplication document.

11. Right-click your code project. Then click the Insert menu, and click Module.

12. In the Properties pane (lower left corner of screen), click the Name field, and type
AppEventHandler.

13. In the Code pane (right side of screen), type the following:
Dim wordApp As New ThisApplication.

Sub AutoNew()

Set wordApp.App = Word.Application

wordApp.IsScriptExecuted = False

End Sub

14. Save the document template in .dotm format.

15. To use your template, just copy it to a target machine, and open it. As a result, a
new document will be created based on your template (that is, with your template
script executed).

Tip:

l To modify your template, right-click it fromWindows Explorer, and select Edit
from a context menu.

34

Developer Guide

l You can have more than one macro template, however only one template will
be used at the same time.

Macro interface members

The following interface members can be used to build macro-enabled templates for
WorkZone for Word:

Macro interface member Description

String ShowCaseCreateDialog()
Displays the Create Case dialog box. Returns
the key of a created case or null.

String ShowCaseSearchDialog()
Displays the Search Case dialog box. Returns
the key of a selected case or null.

String ShowDocumentOpenDialog()
Displays the Document Open dialog box.
Returns the key of an open document or null.

Bool RegistrationPaneVisible {

get; set; }

True in order to display the Registration pane;
otherwise False.

Void ShowDocumentPartiesDialog
()

Displays the Add Document References dialog
box. You can manage the document references
interactively. All changes made in the dialog are
saved to the current document.

Void ShowDocu-
mentRecipientsDialog()

Displays the Add Recipients dialog box. You can
manage the document recipients interactively. All
changes made in the dialog box are saved to the
current document.

Void SetDocumentMetadata (string
key, object value)

Sets document meta data (for example, Title,
Document Type, Document Group, Case Hand-
ler, Parties, Document References, and so on).

Object GetDocumentMetadata
(string key)

Gets current document meta data (including doc-
ument number, parties document references, and
so on).

35

WorkZone for Office 2021.2

Macro interface member Description

Void AddDocumentParty (string
addressKey, string partyRole)

Adds the corresponding contact of specified
addressKey as a document party.

Void AddDocumentReference
(string documentKey, string doc-

umentRole)

Adds the document reference to the document,
identified by documentKey to the current doc-
ument.

Void Merge() Perform merge to content controls.

String SaveDocument()
Saves the current document. Returns ID of the
saved document.

Void AttachDocumentToCase
(string caseKey)

Attaches the document to a specific case, and
show the Registration pane if it is not visible.

String GetODataEndpointAddress()
Turns current endpoint address for OData ser-
vices.

Bool IsMergedDocument { get;

set; }

True if this document is created in the process
of merging to multiple recipients; otherwise
False.

Before_Merge (bool Cancel)

The member notifies that the merging starts. Set
the Cancel parameter to True if you want to
cancel the merging. The member is used for a
specific document only.

To use the member, VBA must subscribe to it by
using this method: Register-
CallbackOnActiveDocument(string

callbackMethod, object call-

backOwner), where callbackMethod stands
for Before_Merge and callbackOwner
stands for a VBA module where Before_
Merge is declared.

To unsubscribe, use this method: Unre-
gisterCallbackOnActiveDocument

(string callbackMethod, object

callbackOwner). These methods are applied

36

Developer Guide

Macro interface member Description

to the active document.

After_Merge (int RecordKey, int
FileKey)

The member notifies that the merging ends and
provides case and document IDs of the merged
document.

To use the member, VBA must subscribe to it by
using this method: Register-
CallbackOnActiveDocument(string

callbackMethod, object call-

backOwner), where callbackMethod stands
for After_Merge and callbackOwner
stands for VBA module where After_Merge is
declared.

To unsubscribe, use this method: Unre-
gisterCallbackOnActiveDocument

(string callbackMethod, object

callbackOwner). These methods are applied
to the active document.

bool WorkZone_BeforeMerge (string
id)

Use it as the alternative to Before_Merge or
use both members simultaneously. In contrast to
Before_Merge, WorkZone_BeforeMerge
applies globally within the WorkZone for Office
add-in and doesn't require registration. If True,
merging is cancelled. If False, merging starts.

WorkZone_AfterMerge(string id)

Use it as the alternative to After_Merge or use
both members simultaneously. In contrast to
After_Merge, WorkZone_BeforeMerge
applies globally within the WorkZone for Office
add-in and doesn't require registration.

All possible key values for your documents are defined in the ColumnSetDefinitions file. You
can edit them according to your needs. See Customize view and dialog boxes.

37

WorkZone for Office 2021.2

API

API integration

About integration

You can integrate your system with the WorkZone for Office add-in, access the existing files,
and create new documents via the API. To do this, you must use the wzfo.in-
tegration.js javascript module. The module includes asynchronous methods that return
jQuery promises. Use the promises to track the status of asynchronous operations.

When you install the WorkZone for Office Server, the installer adds the wzfo.in-
tegration.js file to the WorkZone Server.

Available API methods

Method Description

initialize Optional method. Determines language settings of the integ-
ration module. It receives the cultureName argument in the
format like da-DK or da.

isWordEnabled Returns true if Microsoft Word and WorkZone for Office add-
in for Word are installed. Otherwise, the method returns
false.

isExcelEnabled Returns true if Microsoft Excel and WorkZone for Office add-
in for Excel are installed. Otherwise, the method returns
false.

isPowerpointEnabled Returns true if Microsoft PowerPoint and WorkZone for
Office add-in for PowerPoint are installed. Otherwise, returns
false.

isOutlookEnabled Returns true if Microsoft Outlook and WorkZone for Office

38

Developer Guide

Method Description

add-in for Outlook are installed. Otherwise, returns false.

openEmail Opens a requested email. This method requires WorkZone
record Id.

{recordId:<id>}

replyDocument Creates a new Microsoft Word document that is linked to an
existing document. This method requires a document ID of the
existing document.

{recordId:<id>}

createEmail Creates a new email with the following parameters:

l Subject

l Body

l Recipients:

l To

l Cc

l Bcc.

{Subject:"<Test sub-

ject>",Body:"<test body>",

Recipients:{To:"<to@lmdom.local>",

Cc:"<c-

c@lm-

dom.-

local>",Bcc:"<bcc@lmdom.local>"}}

attachDocuments Creates a new email with an attachment. This method
requires the following parameters:

l ids – Specify the IDs of the documents that must be
attached to this email.

l asPdf – This defines the file format of the attached
files. Set this parameter to false to attach the doc-

39

WorkZone for Office 2021.2

Method Description

uments in the original file format. Set this parameter
to true to attach the documents as PDF files.

Example: {ids:[<id>,<id>],asPdf:false}

Note: If there is no PDF file of the requested document
on the server, neither the PDF nor the original file will be
attached.

cre-

atePro-

cessOverviewFolder

Creates a new folder in Microsoft Outlook. This folder is loc-
ated in Process Views -> My Views. This method requires the
following parameters:

l name – Specify a name for the new folder.

l folderUrl – Specify an address for the content to be
displayed in the folder.

{name:"<name>",folderUrl:"<URL>"}

Merge API

WorkZone for Office enables you to customize content controls and merge them with inform-
ation by using public API. Find more information here:

l Walkthrough: Binding Content Controls to Custom XML Parts

l Custom XML Parts Overview

To use public API, install the compiled version of WorkZone for Office and the following library
assemblies:

Kmd.Wzfo.CustomXmlParts.Bootstrapper.dll

Kmd.Wzfo.CustomXmlParts.dll

40

https://msdn.microsoft.com/en-us/library/bb398244.aspx
https://msdn.microsoft.com/en-us/library/bb608618.aspx

Developer Guide

Kmd.Wzfo.CustomXmlParts.Workzone.dll

Scanjour.Office.Services.Interfaces.dll

Scanjour.Office.ODataClient.dll

Scanjour.OData.Client.dll

Scanjour.Utils.dll

Kmd.Wzfo.CustomXmlParts.Bootstrapper.dll is the entry point library assembly. It
contains WorkzoneCustomXmlPartBuilderFactory with method 'ICus-
tomXmlPartBuilder Create(BuilderParameters parameters, IPro-

tectedAddressesAcceptor protectedAddressesAcceptor)'

To generate data source for WorkZone for Office content controls, proceed with the following
steps:

1. Create instance of ICustomXmlPartBuilder by running WorkzoneCus-
tomXmlPartBuilderFactory.Create with appropriate arguments;

2. Build custom xml part

BuilderParameters

public class BuilderParameters

{

public BuilderParameters(Uri oDataEndpoint)

{

ODataEndpoint = oDataEndpoint;

CredentialsProvider = new DefaultNetworkCredentialsProvider();

CacheDuration = new TimeSpan(0, 0, 10, 0);

CultureProvider = new ApplicationLocalizer();

}

public Uri ODataEndpoint { get; }

public ICredentialsProvider CredentialsProvider { get; set; }

public TimeSpan CacheDuration { get; set; }

public ICultureProvider CultureProvider { get; set; }

public bool UseOAuth { get; set; }

public string AccessToken { get; set; }

}

41

WorkZone for Office 2021.2

where:

l ODataEndpoint – OData endpoint for building xml part, for example, https://d-
b01/OData;

l CredentialsProvider – Interface for getting OData credentials;

l CacheDuration – Duration of the cache that will be used by WorkZone for Office
caching mechanism;

l CultureProvider – Extracts data of specific language for OData.

l AccessToken – Used in token-based authentication to allow an application to
access an API if your organization uses OAuth2 for user authentication.

l UseOAuth – Enables using an access token for OAuth2 authentication if your organ-
ization uses such authentication.

IProtectedAddressesAcceptor

This interface is used to set rules for handling protected addresses. By default, its values are
set to false, so that protected address fields are hidden on UI.

public interface IProtectedAddressesAcceptor

{

bool AcceptCasePartyAddress(IParty party);

bool AcceptRecordPartyAddress(IParty party);

bool AcceptCaseOfficerAddress();

bool AcceptCaseResponsibleOuAddress();

bool AcceptRecordOfficerAddress();

bool AcceptRecordResponsibleOuAddress();

}

ICustomXmlPartBuilder

You can use the build custom xml part as data source for WorkZone for Office content con-
trols.

public interface ICustomXmlPartBuilder

{

Task<string> BuildAsync(string recordId, IEnu-

merable<IParty> recordParties, IEnumerable<IReadCustomXmlMapping>

42

Developer Guide

contentControls);

Task<string> BuildAsync(string recordId, string caseId,

IEnumerable<IParty> recordParties, IEnu-

merable<IReadCustomXmlMapping> contentControls);

}

where:

l recordId – document ID that is used as a data context for building custom xml part.

l caseId – case ID that is used as a data context for building custom xml part.

In the upper BuildAsync method, case ID is retrieved from primary case metadata by using
recordID. In the lower BuildAsync method, case ID is retrieved directly from caseID.

If you get AuthenticationException when using the BuildAsync method in the
OAuth2 mode, it means that the current access token has expired and another one should be
obtained.

IParty

For Merge API, this interface is used to describe case party properties, for example, case
party role:

new PartyRole ("Afsender", "AP")

public interface IParty

{

string AddressKey { get; }

PartyRole Role { get; }

}

IReadCustomXmlMapping

This interface contains information about Content Control for which we build custom xml data.

public interface IReadCustomXmlMapping

{

string XmlMappingPrefix { get; }

string XmlMappingXPath { get; }

string Tag { get; }

43

WorkZone for Office 2021.2

ContentControlType Type { get; }

}

Ensure that your client extracts correct data from content controls via Merge API and then
merge the data with the instance of IReadCustomXmlMapping.

44

Developer Guide

Terms and conditions

Intellectual property rights

This document is the property of KMD. The data contained herein, in whole or in part, may not
be duplicated, used or disclosed outside the recipient for any purpose other than to conduct
business and technical evaluation provided that this is approved by KMD according to the
agreement between KMD and the recipient. This restriction does not limit the recipient’s right
to use information contained in the data if it is obtained from another source without restriction
set out in the agreement between KMD and the recipient or by law.

Disclaimer

This document is intended for informational purposes only. Any information herein is believed
to be reliable. However, KMD assumes no responsibility for the accuracy of the information.
KMD reserves the right to change the document and the products described without notice.
KMD and the authors disclaim any and all liabilities.

Copyright © KMD A/S 2021. All rights reserved.

45

	Developer Guide for WorkZone for Office 2021.2
	What's new
	Get started
	Customizing WorkZone for Office
	Component overview
	About SJStyles
	Customize view and dialog boxes
	Customize content controls
	XML files structure

	Install customizations

	Working with macro-enabled templates
	Create macro-enabled templates
	Macro interface members

	API
	API integration
	Merge API

	Terms and conditions

