
2021.3

Developer Guide

WorkZone PDF 2021.3

Contents

Developer Guide for WorkZone PDF 2021.3 7

Related product documentation 7

WorkZone links 7

What's new in WorkZone PDF 8

Changes in Microsoft Word templates of custom reports 8

Adjusted PDF remerge logic 8

API documentation 11

Open the API documentation 11

Localization and language 11

If the Accept-Language header has been specified 12

If the Accept-Language header is not specified 12

WorkZone PDF configuration 13

About WorkZone PDF Engine configuration settings 13

Missing parameters 13

Parameter priorities 13

Defining parameters for multiple instances of the PDF Engine 15

Create parameter settings for PDF Engine instances 15

15

Unique instance names 15

Default instances 16

Specify the PDF Engine instance in the web.config file 16

Incorrect Target parameter 16

Custom Parameters not in the database 16

Custom reports 17

Standard and custom reports 17

View reports 17

About custom reports 17

2

Developer Guide

Custom reports overview 17

OData queries and Word/Excel templates 17

Report JSON file 18

Install the report 18

The custom report creation process 18

The custom report creation process 18

Localization of custom report templates 19

Localizing content controls 19

Report references 20

The properties of the report references 20

Report ID 20

Bindings 20

Order 22

Create a report template 23

The OData query 23

Create OData queries 23

Create the Report JSON file 24

The Report JSON file contents 25

The OData query section in the Report JSON file 26

Report JSON example 28

Create the XML model and the report templates 32

Creating the XML Model 33

The GET action 33

Additional options 33

Localizing the XML model 34

Create the Word template 34

To create the Word template 34

Additional options 35

3

WorkZone PDF 2021.3

View the OData queries 35

View the XML Model 35

Add the content controls 35

Content control properties 37

Repeating content controls 37

Nested repeating content controls 39

Placeholder text in content controls 40

Example – Custom report Word template 41

Create the Excel template 42

Generate Excel template 43

Customize Excel template 45

Manually 45

By using formulas 46

View OData query and XML model 47

Create the HTML template 47

Change logo in the report 47

Distribute custom reports to WorkZone Content Server 47

Update 48

Update XML model 48

Update template body 48

Update the XML model and the templates 49

See Also 49

Preview custom reports by using the POST request 49

The KMD WorkZone PDF.exe program 50

Report options 50

Report options 51

PDF options 51

Cover pages 51

4

Developer Guide

Troubleshooting custom reports and tips 53

PDF options 55

Custom headers and footers 55

Custom text 55

Placeholders 56

Custom text in placeholders 56

Document data in placeholders 56

Including quotation marks in the placeholder custom text 57

Placeholder tokens 57

No Select clause in the report JSON 57

Expanded tables in the report JSON 57

Additional placeholder tokens 58

Empty document data 59

Places where headers and footers can be defined 59

Header and footer alignment and margins 60

Alignment 60

Margins 61

Examples of custom headers and footers 61

Watermarks in reports 64

Watermark parameter 64

WatermarkStyle parameter 64

Global page numbering 65

Remerging documents 66

Step 1 — Preparation for remerging 66

Step 2 — Remerging 67

Server side document merging 67

Terms and conditions 69

Intellectual property rights 69

5

WorkZone PDF 2021.3

Disclaimer 69

6

Developer Guide

Developer Guide for WorkZone
PDF 2021.3

You can use the WorkZone PDF Engine as a Web service or as a NuGet package.

In the first case, you need to install the WorkZone PDF Engine, and then the API description
will be available at <PDF Engine url>/Help, for example, Sandbox.

In the second case, you can add the KMD.WorkZone.Engine NuGet package, available
from the KMD repository, to your project.

You must have an account to access the repository. If you do not have an account, contact
KMD.

Related product documentation

l WorkZone PDF Administrator Guide

l API documentation via Swagger UI

WorkZone links

l WorkZone documentation

l WorkZone support

l WorkZone website

l WorkZone portal

7

https://docs.workzone.kmd.net/2021_3/en-us/Content/WZ_InstallGuide/Install/PDF/Engine.htm
https://sandbox.connectzone.dk/Render/Help
https://dev.azure.com/workzone-kmddk/WorkZone/_packaging?_a=feed&feed=WorkZoneNuGet
https://docs.workzone.kmd.net/2021_3/en-us/Content/WZPDF_AdminGuide/Home.htm
https://docs.workzone.kmd.net/
http://support.kmd.dk/
https://www.kmd.dk/loesninger-og-services/loesninger/enterprise-information-management
https://workzone.kmd.net/

WorkZone PDF 2021.3

What's new in WorkZone PDF
No changes in this release.

WorkZone PDF 2021.2

Changes in MicrosoftWord templates of custom reports

If a main document has at least one supplementary document, the number of supplementary
documents will be displayed in brackets after the title of the main document. See Add the con-
tent controls.

WorkZone PDF 2021.1

Adjusted PDF remerge logic

The initial Microsoft Word document and attached files are now embedded to a PDF file.
When there is a request to remerge the PDF file, the embedded Word document is changed,
and then new PDF file with the same attachments is generated.

WorkZone PDF 2021.0

l Date format from the WorkZone Content Server is used in the report templates
except when the format is specified manually.

WorkZone PDF 2020.3

l Reports were added to the NuGet package for the WorkZone PDF service.

WorkZone PDF 2020.2

l The procedure of reports update in the same release was simplified. The Version
parameter now includes hotfixes such as builds. See Create the Report JSON file.

8

Developer Guide

WorkZone PDF 2020.1

No changes in this release.

WorkZone PDF 2020.0

No changes in this release.

WorkZone PDF 2019.3

No changes in this release.

WorkZone PDF 2019.2

No changes in this release.

WorkZone PDF 2019.1

l Detailed information on how to access API documentation has been added to this
guide. Note that WorkZone PDF API documentation is published via Swagger UI.
This provides additional functionality such as API testing, code building, and other
features.

WorkZone PDF 2019.0

l You can remerge Word documents before converting to PDF.

WorkZone PDF 2018.1

l Deploy Custom Reports during installation or update: By placing your custom
report templates in the Reports sub-folder of the same folder where the
KMD WorkZone PDF.exe program is located, you can automatically deploy your cus-
tom reports during installation or update when selecting the mandatory Database
Configuration option.

l Reports API replaces KMD.WorkZone.ODataQueries.TemplatingEngine.exe: The
Reports API has been extended to be able to create the XML model used for custom
report s as well as to create the custom report templates themselves (Excel spread-
sheets and Word documents). The Reports API replaces the
KMD.WorkZone.ODataQueries.TemplatingEngine.exe application which has been
deprecated as of this release.

l WorkZone Content Server language settings used by default: If the WorkZone Con-
tent Server is used to process requests, for example if a report request uses OData
connections, the language settings of the WorkZone Content Server are used unless
the Accept-Language header is specified in the request. If the Accept-Language

9

WorkZone PDF 2021.3

header is not specified and the WorkZone Content Server is not used to process
requests, the en-GB language code is used as a default.

WorkZone PDF 2018.0

The first version of the Developer Guide.

10

Developer Guide

API documentation

Prerequisite: If your WorkZone PDF Engine instance uses Windows authentication,
you must enter your WorkZone credentials to access WorkZone PDF
API documentation.

WorkZone PDF API documentation contains API that help you adjust PDF settings, report set-
tings, and communicate with WorkZone PDF.

Open the API documentation

1. Enter http://<WorkZone URL>/Render/help in a browser, for example,
http://db01/Render/help.

2. You can see all available documentation for WorkZone PDF. Select what you
need:

l API documentation via Swagger UI – View a list of available API and access addi-
tional functionality such as API testing and code building.

l OpenAPI resources for advanced scenarios – Open API as a JSON file to use it for
the advanced features. See Swagger official page.

Localization and language

You can use the Accept-Language header of the POST action in the WorkZone PDF API to
specify the culture-specific text formatting for PDF conversion and to specify the expected lan-
guage of the report content and selection of the correct localized report template. In general,
the Accept-Language header is used by all aspects of the WorkZone PDF product to specify
language and culture. Currently you can specify en-GB (for English) or da-DK (for Danish).

The language code is used for the report depends on the language settings of the WorkZone
Content Server as well as the Accept-Language value.

11

https://swagger.io/

WorkZone PDF 2021.3

If the Accept-Language header has been specified

If the Accept-Language header has been specified, the Accept-Language header will override
all other options in the report and the language code contained the Accept-Language header
will be used. The language code specified on the WorkZone Content Server will not be used.

If the Accept-Language header is not specified

If the Accept-Language header is not specified and if the API route used implies an OData
connection, the language code specified on the WorkZone Content Server will be used. If
OData-related requests are utilized, the Accept-Language header should be omitted from the
Report request.

If the Accept-Language header is not specified and if the API route does not imply an OData
connection, the language code "en-GB" will be used as a default.

12

Developer Guide

WorkZone PDF configuration

About WorkZone PDF Engine configuration settings

A WorkZone PDF Engine configuration setting can be defined multiple places in the
WorkZone program, for example you can define default values upon installation of the
WorkZone PDF Engine and then specify different configuration parameters through the
WorkZone Configurator or in the WorkZone PDF Engine web.config file as well as specifying
parameters in the JSON file when generating PDF reports in the WorkZone Client.

Missing parameters

Parameters that are not implemented in the WorkZone Configurator module can be manually
added to the WZPDF_CONFIGURATION table by using the ScanSQL program.

Parameter priorities

The following list illustrates the priority ranking of each WorkZone PDF Engine parameter,
with the highest ranked parameter placed first.

The priority is for each individual parameter and not the entire WorkZone PDF Engine para-
meter stack.

1. Body: Parameters specified in the body of the report JSON file.

2. HTTPS Header: Parameters specified in the header of the API call.

3. Database settings: WorkZone PDF Engine settings specified by using the
WorkZone Configurator or by using the ScanSQL program directly into the data-
base in the WZPDF_CONFIGURATION table.

4. Web.Config settings: Settings specified in the Web.Config file.

5. Installation default values; The settings specified when the WorkZone PDF
Engine was initially installed.

Example:

13

WorkZone PDF 2021.3

Parameter location HTTP Header
Header Style,
Font

Header
Style,
color

API Body Overview Font: Arial -

Configuration Data-
base*

- Font: Comic Sans -

Web.Config file Central
Reports

- -

Installation default Reports Font: Verdana Blue

* In the WZPDF_CONFIGURATION table.

In the example above

l The header "Overview" will be displayed in the Arial font when a PDF report is gen-
erated using the specific API call that contains the Header parameter in the body. If
another PDF report is generated that does not use the API call, the header will be
"Central Reports", displayed in the Comic Sans font.

l If the Web.Config file is deleted or of the Header and Header Style, Font parameters
in the Web.config file are deleted, the PDF report will contain the header: "Reports"
and the Header font: Comic Sans if the report is generated without using the API call.

l If the Web.Config file is deleted or of the Header and Header Style, Font parameters
in the Web.config file are deleted, the PDF report will contain the header: "Overview"
and the Header font: Arial if the report is generated using the API call.

l The header color will be Blue for all PDF reports as there are no parameters defined
header color in the API Body, configuration database or the Web.config file.

Tip: If your installation of WorkZone PDF Engine contains many parameter settings in
the web.config file and you want to keep the settings, make sure the values for the spe-
cific parameter settings are empty or undefined in the Configuration database.

14

Developer Guide

Defining parameters for multiple instances of the PDF Engine

You can invoke multiple instances of the WorkZone PDF Engine, each with its own set of pre-
defined parameters by using the Target PDF Engine custom parameter in the web.config file
for the PDF Engine.

For example, the PDF Engine invoked to process PDFs from the WorkZone SmartPost mod-
ule could be invoked with its own set of parameters while another instance of the WorkZone
PDF Engine could be invoked with parameters defined for that instance only.

Each instance of the WorkZone PDF Engine and WorkZone PDF Crawler can therefore be
defined with its own set of parameters.

Create parameter settings for PDF Engine instances

Since WorkZone PDF Engine and WorkZone PDF Crawler custom parameter settings are
stored in the WZPDF_CONFIGURATION table, you should first create the parameter settings
in the WZPDF_CONFIGURATION table for each instance you expect to use.

Creating the parameter settings first will give you a list of valid PDF Engine instances as well
as their unique names, making it easier to specify which instance to invoke in the
PDF Engine web.config file later.

Entries in the WZPDF_CONFIGURATION table can be made using the ScanSQL program
distributed with the WorkZone product.

Example: Create parameter settings for SmartPost PDF Engine instance

In this example, a new set of parameter settings is created in the WZPDF_
CONFIGURATION table for the PDF Engine instance named "SmartPost".

INSERT INTO WZPDF_CONFIGURATION(TARGET, NAME, CUSTOM_VALUE)

VALUES('SmartPost', 'Watermark', 'PROTECTED COPY');

Unique instance names

You must uniquely name each instance you expect to use in the Target field of the WZPDF_
CONFIGURATION table. Any custom parameters specified for that instance will be applied

15

WorkZone PDF 2021.3

when the instance is invoked from the web.config file using the Target engine custom para-
meter.

Default instances

The WZPDF_CONFIGURATION table contains one named instance with the default value:
PDFENGINE. You can specify as many instances in the WZPDF_CONFIGURATION table as
you need.

Specify the PDF Engine instance in the web.config file

Once you have created the PDF Engine instances you want to use and defined the custom
parameters for each individual instance, you can update the PDF Engine web.config file,
using the Target PDF engine custom parameter to specify which instance you want to invoke.

Any custom parameters specified in the WZPDF_CONFIGURATION table will be applied to
the invoked instance.

Incorrect Target parameter

If the Target PDF Engine custom parameter is incorrect - either because it is misspelled or
because the instance named in the Target parameter does not correspond to the instance
named in the Target field of the WZPDF_CONFIGURATION table, the request will fail with a
404 Not Found error and the error message: The configuration for target"..." is not found..

Custom Parameters not in the database

For custom parameters that are only specified in the request API or web.config files, you must
include the custom parameters in the request since they will not be available from the
WZPDF_CONFIGURATION table.

16

Developer Guide

Custom reports
Reports in WorkZone Client allow you to gain a better overview of your cases and doc-
uments. Reports are usually run from the WorkZone Client program and are converted as
PDF files.

Standard and custom reports

WorkZone Client contains several standard reports, which are available after a standard
installation of the product.

The standard reports include a general classification scheme, which lists the case groups,
case titles, and responsible units (if any), and a document list, which lists all parties and
attached documents for a specific case.

WorkZone Client also contains tools that enable you to run customized reports in order to bet-
ter reflect the reporting requirements of specific customers.

View reports

You can display your reports on the screen, send them directly to a printer or save them in
another location.

About custom reports

Custom reports overview

You can create custom reports and make the reports available for users. Customized reports
are made accessible to users in the Reports menu in WorkZone Client after they have been
deployed.

OData queries and Word/Excel templates

WorkZone reports are based on OData queries and Microsoft Word or Microsoft Excel tem-
plates. OData queries are contained in the Report JSON in a file tree view and are used to
generate the XML models used in the Word or Excel templates. Word or Excel templates are

17

WorkZone PDF 2021.3

corresponding office files that contain XML models and Content Controls (placeholders for
data).

Report JSON file

When the custom report template is completed, a Report JSON file must be created. The
Report JSON file contains information and metadata about the custom report template and
any translated versions as well as all OData requests or queries used to populate the Content
Controls in the template when the report is run.

Install the report

When the Report JSON file is completed, all custom report templates and the Report JSON
file must be moved to the Report folder of the installation folder. The installer must then be run
again in order to update the database and make the new custom report available for users
through the Reports menu in WorkZone Client.

The custom report creation process

The custom report creation process

l Create and test the OData queries you want to use to generate the custom report
data.

l Create the Report JSON file, and specify the titles and file names of the report tem-
plates as well as all other OData queries and JSON properties.

l Create the report template (Word or Excel) with the XML Model embedded by using
the Report JSON file.

l In Microsoft Office, refine the report template by using the XML model to cre-
ate content controls as well as normal Word/Excel formatting.

18

Developer Guide

l Create translated templates by copying the original report template and
translating all text in the document. Do not translate the text inside the con-
tent controls.

l Add the report templates and the Report JSON file to the Report folder and deploy
the report using the installer to make the reports available in the WorkZone Client.

Localization of custom report templates

Report templates can be localized, so that translated into other languages by directly trans-
lating all actual text in the report template and then saving the report template with a different
name – for example, DocumentReport_DK for the report in Danish and DocumentReport_US
for the same report in English.

The localized reports are later referenced in the Report JSON file to differentiate between the
languages.

Additionally, based on the Accept-Language header value or the WorkZone Content Server
language setting, the generated XML model is localized as well, and this can be seen from
the model's node names and default text inside Content Controls on the report template files
(.docx or.xlsx).

Tip: It is advisable to create the original report first, update the Report JSON file, and
verify that the report is correctly deployed and displayed in WorkZone Client before cre-
ating translated versions of the report. You will still have to update the Report JSON file
for every translated report you create.

Localizing content controls

Do not translate the placeholder text in the content controls, as the placeholder texts will be
overwritten when the report is run.

19

WorkZone PDF 2021.3

Report references

Use report references to connect two or more reports in order to create a single, complex
report as a combination of several simpler reports.

Report references are created and maintained in the Report JSON file.

Each report reference must contain the Report ID of the referenced report as well as all neces-
sary Report Bindings. You can also specify the sorting order of the report references by setting
an Order property for each referenced report.

The creation of reports consists of these general steps

1. Retrieve the report template (Word, Excel, or HTML)

2. Retrieve the report data in JSON format by using parameters obtained from
WorkZone Client.

3. Bind the report data to the report template.

4. Include any document cover-pages or contents to the report.

5. Create subreports from the report references.

6. Generate parameters for the subreport from the report data (step 2) by using report
by bindings.

7. Repeat steps 1-5 for each subreport and parameters.

The properties of the report references

Report ID

The unique identification number of the report, which is expressed as a GUID. Each report
has a unique alphanumeric number used to identify and locate the report in the system, and
the Report ID is used to locate and connect to the specific report you want to reference.

Bindings

Report Bindings describe how to obtain the parameters for the subreport from the report data.

You must specify the data you want returned in the properties of the Bindings object.

For each property, you must specify a property name and a property value.

The property name is the parameter name in the referenced report, and the property value is a
JPath to the parameter data of the main report.

20

Developer Guide

Example: Case and Record report

In this example, the Case report is the main report and the Record report is the sub-
report.

For the Case report, the report data would be: { Title: ‘Case title’, FileRecords: [{ ID: 1 },
{ ID: 2 }, { ID: 3 }] }

Since the Record report (the subreport) uses the RecordKey as a parameter, the report
binding would be { RecordKey: ‘$.FileRecords[*].ID’ }.

This report binding will result in the three different parameters: RecordKey = 1,
RecordKey = 2, and RecordKey = 3, which are used to create 3 Record subreports.

Note:

l If report bindings are not required to connect the reports - for example, if the
sub-report does not contain any parameters - the bindings should be specified
as an empty JSON.

l If the report bindings are incorrectly specified, a report will be created without
subreports, because the connections required for the subreport would fail.

Limitations

Report references support single-value and multivalue parameters, but, if the subreport con-
tains two or more single-value parameters, the entire report will fail.

l Single-value parameters: If the subreport contains the RecordKey: ‘’ parameter
(single-value parameter), the report binding will result in multiple subreport para-
meters: RecordKeys: [1], RecordKeys: [2], RecordKeys: [3].

In the example above, the three ID properties will result in three RecordKey para-
meters, because the RecordKey is a single-value (non-array) parameter.

l Multivalue parameters: If the subreport contains the RecordKeys: [] parameter (mul-
tivalue parameter), the report binding will result in only one subreport parameter
RecordKeys: [1, 2, 3].

21

WorkZone PDF 2021.3

l Single-value and Multivalue parameters: If the subreport contains RecordKey: ‘’ and
RecordKeys: [] parameters (one single-value and other multivalues parameters), the
report binding result in three subreport parameters:

l RecordKey = 1 and RecordKeys: [1, 2, 3]

l RecordKey = 2 and RecordKeys: [1, 2, 3]

l RecordKey = 3 and RecordKeys: [1, 2, 3]

l Two or more single-value parameters: If the subreport contains the RecordKey1: ‘’
and RecordKey2: ‘’ parameters (two or more single-value parameters), the report
binding will fail, and an error will be thrown.

Order

The order determines in which sequence the referenced reports are added to the referencing
(main) report. Any number between 0 and 99 can be used as input, and the referenced reports
will thereafter be sorted in ascending order by this value, for example, 1, 5, 7 11, 13, etc.)

If the Order object is not included in the report references or is incorrect, reports will be added
to the report references as they are found rather than in a specified order.

Report references example

In this example, the Case report contains a report reference to the Record report. The Case
report is the main report and the Record report is the subreport. The sorting order value is set
as "1".

{

"ReportId": "36a4cb00-2e92-4b5a-ac18-c1dbce60718d",

"References": [

{

"ReportId": "2a66c0a3-f3c9-4729-a9d9-29dcf8edf381",

"Bindings": {

"RecordKey": "$.Files.FileRecords[*].RecordKey"

},

"Order": 1

}

],

"Version": null,

"EntityType": "File",...

22

Developer Guide

Create a report template

To create a Word or Excel report template, use this section as a guidance. Note that you must
follow steps in the particular order:

1. Create OData query

2. Create the report JSON file

3. Create the XML model

4. Create the Word, Excel or HTML template

5. Distribute reports to WorkZone Content Server

The OData query

OData queries are used to retrieve document data for the custom report and to create the XML
model used to bind or merge retrieved data to the placeholders in the Word or Excel report
templates (the Content Controls)

You cannot use Odata queries to retrieve document data directly from the WorkZone Content
Server. Instead you must use the Report JSON file to contain the OData queries you want to
use for the report.

The OData queries in the Report JSON file are based on standard OData queries using
WorkZone specific rules of organizing OData queries and are are organized in a special tree
structure in the Report JSON file.

Create OData queries

OData Queries are queries into the existing OData model that return requested data.

The OData queries can be created with a valid OData address (for example, http://d-
b01/OData) and verified with existing data. You can use an Internet browser (for example,
Microsoft Internet Explorer) and the WorkZone Query Builder tool to compose the OData quer-
ies.

23

WorkZone PDF 2021.3

You can also create the OData queries directly in the Report JSON file, but it is advisable to
create and test OData queries before you create the Report JSON file in order to ensure that
the OData queries return the requested document data correctly.

OData query

Example: You want to create a report that retrieves specific document metadata as well
as any supplementary documents.

A query is created to retrieve the document metadata, such as type, summary, ID, and
title.

http://db01/OData/Records

('1')?$select=RecordKey,RecordNo,Title,RecordType_Summary

If you want data about the parent case, you can use the Expand parameter for the appropriate
entity and request its properties in a Select option.

http://db01/OData/Records('1')?$select=

File/FileNo,File/Title&$expand=File

If you want Supplementary Documents for the document, you can modify the query as follows:

http://db01/OData/Records

(‘1’)/SupplementaryDocuments?$select=RecordKey,Title

Create the Report JSON file

The Report JSON file is a JSON file that contains all information necessary for successful exe-
cution of the report and is used to update report data in the WorkZone database.

The WorkZone PDF Installer program uses the Report JSON file to install custom reports
when the Configure Database target option is selected during the PDF installation. You can
also manually update existing reports and add new ones to the WorkZone database, but it is
not recommended.

After you have created the OData quereies, you must create a Report JSON file. As JSON
files are normal text files, you can use any text-editor program to create and edit the Report
JSON file.

24

Developer Guide

The Report JSON file contents

The Report JSON file contains the following information

Parameter
Type,
Length

Description Required

ReportId String, 38 A unique identifier, i.e. a GUID.

Version Number,
12

The version number of the report. The format is 8
to 10 ordinal numbers: for example, xxxxxxxxxx.
The following algorithm is used for forming a ver-
sion number: major+minor +build+revision
(xx.xx.xxxxx.xx). If "minor" and "revision" parts
contain 0, 0 may be omitted: 0x = x.

EntityType String, 30 The entity type for which the report is intended,
for example, Case, Record, Party, Task, Pro-
cess.

Localizations String,
255

The name, description, culture name, and file
name (one or several localizations are allowed).

OdataQueries String,
2000

The OData queries used by the Report JSON.

Parameters String,
2000

JSON with parameters that will pass into the
OData.

Caption String,
255

In reports, the caption value can be used in the
following context:

l as a first-level bookmark (table of con-
tent item) in the PDF file

l in the custom headers or footers

l as a title of a converted PDF file that is
saved on WorkZone Content Server

In Report JSON, you must specify a path to the
caption value. See How to compose a JSON

25

https://goessner.net/articles/JsonPath/index.html#e2

WorkZone PDF 2021.3

Parameter
Type,
Length

Description Required

Path.

Example:

Report JSON: { "Files": { "User-

Key": "C-123" } }

A path in Report JSON: $.Files.User-
Key

Caption value: C-123.

DefaultOutput String, 12 The file type of the report requested by
WorkZone Client. Use the file extension in the
upper-case format, for example, PDF, XLSX,
DOCX, PBIX, etc.

AccessCode The read rights on report (see WorkZone Client
permissions documentation).

UpdateCode Specifies Update rights on report (see WorkZone
Client permissions documentation).

System Specifies type of the report:

True – standard (deployed as a part of install-
ation);

False – customized for the customer's needs.

Default Defines which report of the same EntityType
WorkZone Client will use as the default one.

The OData query section in the Report JSON file

The OData query section of the Report JSON file must contain the following:

26

https://goessner.net/articles/JsonPath/index.html#e2

Developer Guide

l A root (or main) element

l A tree structure of elements, from the root entity to deeper related entities that cor-
respond to parts of the resource path in the OData URL.

l A #Query property under each node with a value that either corresponds to the query
options in OData URL (starts from “?”) or contains the empty value “” if there are no
query options for current resource.

If you want to retrieve an array of objects, you must encompass the objects in question with
square brackets ([]).

Parameters passed to the Report JSON must be prefixed with @.

Example: OData section of the Report JSON file

{

"Records": [

{

"#Query":"('@RecordKeys')?$select=File/FileNo,

File/Title,RecordNo,RecordKey,Title,RecordType_Sum-

mary&$expand=File",

"SupplementaryDocuments": [

{

"#Query": "?$select=RecordKey,Title"

}

]

}

]

}

Additional examples of OData queries can be seen in the Standard Reports in the Reports
table (OData_queries column)

Tip:

27

WorkZone PDF 2021.3

l Do not include the same fields for the same entities in different places in the
OData section.
For example, if you specify a field under a branch, make sure that the same
field does not appear for parent elements when using the expandcommand.

l Check the syntax of the JSON file prior to executing the file. You can use vari-
ous internet sources for the syntax check, for example, http://jso-
neditoronline.org/.

Report JSON example

The following is an example of a Report JSON file. There are two custom report Word tem-
plates:

l DocListSuppDocs_En.docx (English version)

l DocListSuppDocs_Da.docx (Danish version)

Note the “Parameters” section

Tip: Remember to use hard brackets ([]) for multiple values. If you expect to only pass
single values, use normal brackets ({}), according to standard JSON rules.

Example:

{

"ReportId": "5c7f89d4-a0db-4365-bc08-48ffa7f193b0",

"Version": null,

"EntityType": "Records",

"Localizations": [

{

"Name": "DocListSuppDocs",

"Description": "A document list with supplementary documents",

"CultureName": "en-GB",

28

Developer Guide

"FileName": "DocListSuppDocs_En.docx"

},

{

"Name": "DocListSuppDocs",

"Description": "En dokumentliste med bilag",

"CultureName": "da-DK",

"FileName": "DocListSuppDocs_Da.docx"

}

],

"ODataQueries": {

"Records": [

{

"#Query": "('@RecordKeys')?$select=File/FileNo,File/Title,

RecordNo,RecordKey,Title,RecordType_Summary&$expand=File",

"SupplementaryDocuments": [

{

"#Query": "?$select=RecordKey,Title"

}

]

}

]

},

"Parameters": {

"RecordKeys": []

},

"DefaultOutput": "PDF",

"AccessCode": null,

"UpdateCode": "CONFIGADM",

"System": true,

"Default": true

}

The following report JSON examples are taken from the report JSON files included in the
WorkZone suite installation and are therefore available to all users and not customized for
any specific customer.

Agenda report JSON

29

WorkZone PDF 2021.3

The following example of a report JSON file is taken from the Agenda report which is
installed with the WorkZone suite.

{

"ReportId": "297ecb46-f2eb-49cd-b213-51146b225d3f",

"Version": null,

"EntityType": "Agenda",

"Localizations": [

{

"Name": "Agenda",

"Description": "An agenda with documents list",

"CultureName": "en-GB",

"FileName": "Agenda_En.docx"

},

{

"Name": "Dagsorden",

"Description": "Dagsorden med documentliste",

"CultureName": "da-DK",

"FileName": "Agenda_Da.docx"

}

],

"ODataQueries": {

"FileAgendas": {

"#Query": "('@AgendaKey')?$select=SortGroup",

"FileRef": {

"#Query": "?$expand=Text&$select=Title,Text/Text",

"Records":

[

{

"#Query": "?$ex-

pand=Record&$select=Record/RecordKey,Record/Title,

Record/RecordType_Summary,Record/Extension,Record/State_Value"

}

]

}

}

},

30

Developer Guide

"Parameters": { "AgendaKey": "" },

"Caption": "$.FileAgendas.FileRef.Title",

"DefaultOutput": "PDF",

"AccessCode": null,

"UpdateCode": "CONFIGADM",

"System": true,

"Default": true

}

Case report JSON

The following example of a report JSON file is taken from the Case report which is installed
with the WorkZone suite.

{

"ReportId": "36a4cb00-2e92-4b5a-ac18-c1dbce60718d",

"Version": null,

"EntityType": "File",

"Localizations": [

{

"Name": "Case",

"Description": "A case with parties and documents",

"CultureName": "en-GB",

"FileName": "Case_En.docx"

},

{

"Name": "Sag",

"Description": "En sag med parter og dokumenter",

"CultureName": "da-DK",

"FileName": "Case_Da.docx"

}

],

"ODataQueries": {

"Files": {

"#Query": "('@FileKey')?$expand=Parties/Name",

"FileRecords": {

"#Query": "('@FileKey')?$expand=Parties/Name",

31

WorkZone PDF 2021.3

"FileRecords":

[

{

"#Query": "('@RecordKeys')?$expand=Parties/Name&$filter=Pax ne

'A'",

"SupplementaryDocuments": [

{

"#Query": "?$expand=Parties/Name"

}

]

}

]

}

},

"Parameters": {

"FileKey": "",

"RecordKeys": []

},

"Caption": "$.Files.Summary",

"DefaultOutput": "PDF",

"AccessCode": null,

"UpdateCode": "CONFIGADM",

"System": true,

"Default": true

}

Create the XML model and the report templates

The XML Model used as a data source for the content controls in the report template is cre-
ated using the WorkZone Reports API and the information contained in the Report JSON file -
specifically the OData queries and the names of the report templates (Word documents, and
Excel spreadheets).

You can create the XML Model and the Word or Excel templates in one go or you can create
an XML Model only and then use the XML Model in the Report templates (Word documents or
Excel spreadsheets) you create afterwards.

32

Developer Guide

Tip: Before you start, make sure the OData queries are valid and the OData URI is
accessible.

Creating the XML Model

Open the WorkZone Reports API in a 3rd party Web debugger tool. While WorkZone allows
you to access to the Reports API, there is no built-in application or program to manipulate the
Reports API. You can use any 3rd party product to access the WorkZone Reports API, for
example, Telerik Fiddler.

The GET action

Use the GET action of the Reports API and specify the URI of the Report JSON file that is to
be used for the custom report as the parameter. The GET action of the Reports API only has
this one parameter but if you do not specify the parameter correctly, the XML model and report
template creation will fail.

When the GET action is executed, two things might occur, depending on the whether or not
the report templates specified in the Report JSON in the FileName parameter exist in the
same folder as the Report JSON file.

l If the folder containing the Report JSON file does not contain the report template(s)
specified in the FileName parameter of the Report JSON, the report templates will be
created with the XML Model embedded.

l If the folder containing the Report JSON file already contains the report template(s)
specified in the FileName parameter of the Report JSON, the XML Model embedded
in the report templates will be updated with the new XML Model.

Additional options

You can inspect the OData queries used in the Report API to create the XML model and to
populate the report templates as well as display the XML Model generated by the Reports API
by using the Accept header while making request to the Reports API.

The Accept header can be set to the following values:

33

WorkZone PDF 2021.3

l Text/Plain: Returns the OData queries used in the Report JSON file.

l Application/XML: Returns the XML model that will be generated by the GET action of
the Report API.

Localizing the XML model

The generated XML Model can be localized based on the Accept-Language header value or
the WorkZone Content Server language setting. The localization can be seen from the
model's node names and default text inside content controls.

Create the Word template

You can create the Word template with the embedded XML model in one go by using the
GET action of the Reports API.

Tip: Before you start, make sure the OData queries are valid and the OData URI is
accessible.

To create the Word template

l Open the WorkZone Reports API in a 3rd party Web debugger tool.

l Use the GET action of the Reports API and specify the URI of the Report JSON file
that is to be used for the custom report as a parameter to the GET action. If the Word
document template which name is specified in the FileName parameter of the Report
JSON is located in the same folder, then WorkZone PDF injects the XML model into
the template and returns it to the user. Otherwise a blank template is created.

If the Word document template specified in the Report JSON already exists in the same loc-
ation as the Report JSON file, the XML model of the Word document template will be updated
with the new XML model created by the Report JSON.

After the report template has been created, you can modify the Word document template to
conform to whatever requirements you have for the report the Word template is to produce by
placing content controls and ordinary text in the template.

34

Developer Guide

Additional options

View the OData queries

You can view the OData queries used to generate the XML model in the Report JSON by
using the Text/Plain parameter in the Accept header while making requests to the Reports
API.

View the XML Model

You can view the XML model which is generated by the Report JSON by setting the Accept
header to Application/XML value while making requests to the Reports API.

Add the content controls

Content controls are placeholders for document data in Word templates. When the report is
run, the XML model (custom XML) inside the Word template is merged with data retrieved
fromWorkZone Content Server with help of the OData queries in the Report JSON file. The
data from custom XML is inserted in the content control place holders, according to the bind-
ing defined inside content controls.

Place the content controls where you want the document data displayed in the template. Dif-
ferent types of content controls can be selected, but, in most cases, it will be sufficient to
select Plain text.

Another often used type of content controls is the Date Picker. The Date Picker content con-
trol enables you to define the date format directly in content control properties, and it can there-
fore contain data in date format.

Note: You must be able to access the Developer tab in order to define and place con-
tent controls in the Word template.

To add a content control to the template

1. In the Word template, click the Developer tab > XML Mapping Pane to open the
XML Mapping pane.

2. In the XML Mapping pane, select the XML model you want to create content con-
trols for.

35

WorkZone PDF 2021.3

3. In the Word template, place the mouse cursor where you want the content control
to be displayed.

4. In the tree view in the XML Mapping pane, right-click the data element you want
displayed in the template, select Insert Content Control, and then select the ele-
ment type, typically Plain text. The content control will be placed at the mouse
cursor position.

Creating content controls

In this example, the Records XML model located at https://schemas.workzone.dk/Odata has
been selected.

When inserting the content control in the template, the records in the Record XML model and
the Plain text option have been selected.

36

Developer Guide

Content control properties

Define titles and access rights to the content controls in a document by directly editing the con-
tent control properties.

To set up the content control properties, select the content control in the report template, and
either right-click, and select Properties, or click Properties in the Developer tab > Controls
group.

Repeating content controls

A repeating content control repeats all content in the content control, including other content
controls.

If you want to display a running list of elements attached to a main record, for example, dis-
play main document metadata in the upper half of the reports and display any supplementary
documents attached to the main document in the lower half of the report, you must use repeat-
ing content controls to contain the data content controls.

Repeating content controls can also contain and repeat other content controls, for example,
inner and outer lists. See nested repeating content controls below.

37

WorkZone PDF 2021.3

To create repeating content controls

1. In the Word template, create a table, and place the table in the template.

2. Select the table row that is to contain the repeating content control.

3. In theDeveloper tab > Controls group, select the Repeating Section Content
Control button to insert a repeating content control.
You can also right-click the data element in the XML Mapping pane and select
the Repeating to insert a repeating content control.

4. Place the mouse cursor in the table cell where you want to insert a content con-
trol.

5. In the tree view in the XML Mapping pane, right-click the data element you want
displayed, select Insert Content Control, and then select the element type, typ-
ically Plain text. The content control will be placed at the mouse cursor position.

6. Repeat steps 4 and 5 for each data content control you want represented in the
table.

Tables should be used to contain repeating content controls in order to facilitate PDF con-
version, but you can place repeating content controls directly in the report template if you
want.

Simple repeating content controls in a table row

In this example, a table has been created in the report template and made into a repeating sec-
tion content control.

You can display content controls with start and end tags by selecting Start/End tag in the
Show as field in the Content Controls Properties form.

The RecordNo, RecordKey and Title content controls have been added to selected repeating
table cells, enabling the table to create new rows for each new attached document.

38

Developer Guide

If a main document has at least one supplementary document, the number of supplementary
documents will be displayed in brackets after the title of the main document.

Nested repeating content controls

If you want to create a report with nested data - for example, create a list of supplementary doc-
uments for each main document - place the repeating control controls for the supplementary
document inside the repeating content controls for the main document. This corresponds to
nested loops in programming, where the supplementary document repeating content control
is the inner loop and the main document repeating content control is the outer loop.

For example

l Main Document A

l List of supplementary documents for Document A

l Main Document B

l List of supplementary documents for Document B

l Main Document C

l List of supplementary documents for Document C

l Main Document D

l List of supplementary documents for Document D

Nested repeating content controls

In the example below, the red content controls are repeating content controls for the main doc-
ument data, and the blue content controls are repeating content controls for the sup-
plementary document data.

39

WorkZone PDF 2021.3

Placeholder text in content controls

If the content control does not contain data, the placeholder text for the content control will still
be displayed in the report when the report is run.

You can hide content control placeholder text for content controls that contain no data by
adding a space after the content control end tag in the report template and then pressing back-
space to delete the space. The content control tags will change appearance.

Placeholder is text not displayed when data does not exist

In this example, the FileNo and Title placeholder text for the content controls will be displayed
in the report even when there is no data to display.

After the trailing space has been removed, the FileNo and Title content controls will not dis-
play placeholder text when there is no data to display, and they will change appearance:

40

Developer Guide

Tip: Define a title and/or tag for the content control in the Content Control Properties
form to improve your overview of the relations between repeating elements and their
corresponding entities.

Example – Custom reportWord template

The following images are screen shots from an example of a document list report that
includes supplementary documents (if any).

The first template could look like this

41

WorkZone PDF 2021.3

With standard Word styling and formatting applied, the final template might end up looking like
this:

Create the Excel template

You can create the Excel template with the embedded XML model by using the GET action of
the Reports API.

Tip: Before you start, make sure the OData queries are valid and the OData URI is
accessible.

42

Developer Guide

Generate Excel template

1. Open the WorkZone Reports API in a 3rd party Web debugger tool, for example,
Telerik Fiddler.

2. Use the GET action of the Reports API and specify the URI of the Report JSON
file to be used for the custom report as a parameter to the GET action. Specify the
template's language in the Accept-Language header.

3. The OData queries are used to build XML model document where corresponding
OData entities and their relations are described without actual values. The XML
model is used to automatically generate a corresponding XML schema, which
formally describes validation rules for the elements in the XML model document.

4. The Excel report template is created. It has the name specified in the localized
FileName parameter of the Report JSON. Save the Excel template to the same
folder as the source Report JSON file.

Note: If the Excel report template specified in the Report JSON already
exists in the same location as the Report JSON file, the XML Schema of the
Excel template will be overwritten with the new XML Schema created by the
Report JSON.

5. Adjust the generated XML schema to your actual business model and OData entit-
ies:

l Use the POST action of the Reports API and specify the URI of the
Report JSON file as a parameter to the POST action. Specify the tem-
plate's language in the Accept-Language header and define some other
parameters as test data.

l If you have received the 200 Success response – your XML schema is
valid, please skip steps below.

43

WorkZone PDF 2021.3

l If you have received the following error – 400 [XmlException] XML is not
valid according to specified XML Schemas – then read the issue's
description in Message:

l Change the Excel template extension to.zip and open it. Move
xmlMaps.xml from the xl folder outside the.zip package. The
xmlMaps.xml file contains generated XML schema.

l Fix found and potentially dangerous issues in xmlMaps.xml by aligning
it to the WorkZone Content Server data model.

l Overwrite the xl\xmlMaps.xml file with the updated one. Change the file
extension back to.xlsx.

l Repeat first step again to verify XML schema.

44

Developer Guide

Customize Excel template

Now you have a report template with the embedded XML model. It is currently empty and not
yet adjusted to your company's needs.

To create a ready-to-use template, proceed with the following steps:

1. Open the generated template.

2. Ensure that you have the Developer tab added to the main ribbon. Click the
Source button to open the XML Source pane.

See how to add the Developer tab to your Excel application:

1. On the File tab, go to Options > Customize Ribbon.

2. Select Main Tabs under Customize the Ribbon.

3. Select the Developer check box and click OK.

3. Insert a Table object. Number of columns must reflect requirements to the report.

4. Bind table cells and XML elements manually or by using formulas.

Manually

l In the Excel template, select the cell in which you want the XML element
to be displayed.

l In the XML Source pane, right-click the needed data element and select
Map Element.
You can also drag the XML element from the XML Source pane into the
desired cell.

XML elements in Excel are repeating by default. This means that, unlike the con-
tent controls in the Word template, you do not have to define special repeating
XML elements to manage the display of multiple data records.

45

WorkZone PDF 2021.3

By using formulas

Use custom formulas to concatenate, format, or group values of XML elements.

Specify a custom formula in the needed cell in the following format: Path ->

Format, where

l Path is a path to the needed element. Use character '/' as delimiter.

l Format is a string of properties separated by the '&' character. Optionally,
you can define additional parameters by using the following delimiters:

o : – define a type

o = – define a style

o "" or '' – define constants.

Examples:

l Files -> VFacetings/Path

l Files -> Parties/CustomLabel_Value & " - " & Parties/NameType_Value
& " " & Parties/NameCode_Value & ": " & Parties/Name/Name1 & " " &
Parties/Name/Name2

l Files -> Infoes/CustomLabel_Value & ":" & Infoes/Info_Value

46

Developer Guide

l Files -> Dates/CustomLabel_Value & ":" & Dates/DateStamp:DateTime-
e=dd-MM-yyyy

5. Click Save.

6. Test the customized report template. To do this, use the POST action of the
Reports API.

View OData query and XML model

l You can view the OData query used to generate the XML model in the Report JSON
by using the Text/Plain parameter to the ACCEPT request to the Reports API.

l You can view the XML model which is generated by the Report JSON by setting the
Accept header to Application/XML value when you make requests to the Report API.

Create the HTML template

The HTML template for the report is based on the Razor syntax. See more about Razor in the
Microsoft documentation.

Change logo in the report

If you want to change the logo in the report, we recommend that you embed the image data dir-
ectly into the HTML template. Convert your image to base64 using any online conversion tool
and embed the string into the template. Below is an example of the code used to embed the
image. In this code, replace the base64 string placeholder with the string that you get for your
image from the conversion tool.

Distribute custom reports to WorkZone Content Server

Once you have created the report template file from Microsoft Word or Excel and any loc-
alized (i.e. translated) versions of the report template as well as the Report JSON file, you can
use the WorkZone PDF Installer to distribute the report(s) to your WorkZone Client users.

47

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-3.1

WorkZone PDF 2021.3

1. Create a folder called Reports in the same folder where the KMD WorkZone
PDF.exe is located.

2. Place all custom report templates you want deployed during an installation or
update in the Reports folder.

3. Run the WorkZone PDF installer. When the Database Configuration option is
run, any reports placed in the Reports folder will be automatically deployed to the
WorkZone Client by the installation process.

When the PDF Installer installation is completed, the Reports table will be updated with new
entries for the custom reports.

The Template_key corresponds to the Record Key of the report template document, which
contains a Word template.

Note: If you need to edit the report template, you can find the document by using
WorkZone Client. After you have edited the document, you can save the document to
the WorkZone Content Server.
Alternatively, you can create a new document with the Word template and then update
the Template_key to the Record Key of the new report template.

Update

Update XML model

If you want to add new fields to the report template, you must update the embedded XML
model in the Word or Excel templates. See Update the XML model and the templates.

Update template body

If you want to complement the report template with any other changes, for example, to add a
new content control for existing fields in XML model, then you must update the report template
in WorkZone Client. To do this, open the document in WorkZone Client and apply your
changes. See Open a document in corresponding program.

48

https://docs.workzone.kmd.net/2021_3/en-us/Content/WZClient_UserGuide/Document/Document_actions.htm#Open

Developer Guide

Update the XML model and the templates

You can update the embedded XML model in the Word or Excel templates after it has been
used to create Content Controls in Word or as an XML Source file in Excel, for example, if
new fields have been introduced or existing fields have been deleted.

To update the XML model, proceed with the following steps:

1. Update the OData query in the Report JSON with the new fields you want
included in the report templates and test the OData query.

2. Place the report template files (.docx or.xlsx) to be updated in the same folder as
the Report JSON file.

3. Run the GET action of the Report API, defining the URI of the Report JSON. The
XML model will be updated and the report templates will be updated with the new
XML model.

Tip: Remember to save the report templates and reinstall the PDF Engine from the
WorkZone Content Server to distribute the updated report, and update the Reports
table with any updated or new field properties, such as JSON parameters.

See Also

Create the Word template

Create the Excel template

Create the HTML template.

Preview custom reports by using the POST request

Usually, you must re-install the PDF Engine in order to update the Report table, transfer the
report templates, and update the Report/Print menu in WorkZone Client.

If you want to view the custom report during development, you can use a POST request to the
Reports API with the Report JSON URI parameter to display your custom report instead.
Using POST requests will not deploy your custom report and make it available to WorkZone

49

WorkZone PDF 2021.3

client users but it will display your report as it is, enabling you to review the report and make
any required changes.

To view the custom report, you must provide:

l The relevant report parameters inside the POST request body, e.g. “{Parameters:
{"FileKeys":["681"]}}” for the FileKey (Case) 681 same way the final report
POST request is defined.

l A URI to the Report JSON file in the ReportJSON parameter of the POST request.

Note: In order to use the POST request to display the report, the report templates must
be placed in the same location as the Report JSON.

Tip: You can see more information about creating POST requests for retrieving a report
in the Report API documentation.

The KMD WorkZone PDF.exe program

The KMD WorkZone PDF.exe is used to install new versions of WorkZone as well as update
existing versions. The program contains standard report templates which also are deployed
during the installation process.

Note: Custom report templates in the Reports folder will overwrite any standard report
templates contained in the KMD WorkZone PDF.exe program if their names are
identical. This way, you can create your own version of the standard reports in
WorkZone and be able to keep your changes during program updates.

Report options

When creating custom reports as well as running standard WorkZone reports you can define
various report options in the report JSON file to further adjust how the final report is displayed.

The following options can be used with your custom reports.

50

Developer Guide

Report options

l Cover pages: Include a cover page containing meta data for the following document
for each document in the report. See Cover pages.

PDF options

l Bookmarks: Change the default bookmarks by modifying the individual report
request to use case and document titles as bookmarks.

l Custom headers and footers: Define your own header or footer globally or for each
and define the alignment and placement of the header or footer as well.

l Custom Watermark: Define your own watermarks globally or for each local doc-
ument and define the watermark formatting (color, font and/or transparency)

l Global Page numbering: Number all pages of a global PDF document or report in
the header or footer of the document.

See PDF options.

Cover pages

Cover pages contain meta data for the document in question, such as case number, doc-
ument title, contacts. Cover pages can be generated with the report. They can also be
included in the output file when the report document is converted and the report data contains
information about documents.

You can set up a report to include a cover page for every document in the report and you can
create a report that only consists of cover pages from each document by not including any
underlying documents in the report, effectively creating an overview document of the under-
lying reports.

The option to include cover pages and/or document contents in the report must be specified
as the following parameters:

l IncludeDocumentCoverPage: Generate a cover page for the report (True/False)

l IncludeDocumentContents: Generate report contents (True/False)

Set the relevant parameters' values for the specific report in the body of the report JSON file:

To only generate the cover page

51

WorkZone PDF 2021.3

l IncludeDocumentCoverPage: True

l IncludeDocumentContents: False

To generate the report without a cover page

l IncludeDocumentCoverPage: False

l IncludeDocumentContents: True

To generate the report with a cover page

l IncludeDocumentCoverPage: True

l IncludeDocumentContents: True

Note: The JSON file for each specific report must be edited in order to generate a cover
page for the report.

Example: IncludeDocumentCoverPage and IncludeDocumentContents in the Report JSON:

Header

Content-type: application/json

OData: http://db01/OData

Accept: application/pdf

Body

{

Parameters: { FileKey: ‘141’, RecordKeys: [‘20’, ‘18’] },

IncludeDocumentCoverPage: true,

IncludeDocumentContents: true

}

Adjusting the JSON file - $Select clause specified

If the JSON report contains a specific $Select clause for the underlying table, you must spe-
cifically include the RecordKey and State_Value fields in the underlying table in the $Select
statement of the report Odata queries section in order to create cover pages and /or include
underlying document contents in the report.

52

Developer Guide

In the report JSON example, Agenda report (See Also section below), the $Select statement
in the Odata query is specified directly and the query must specifically contain the
RecordKey and State_Value fields.

"#Query": "?$expand=Text&$select=Title,Text/Text",

"Records": [

{

"#Query": "?$ex-

pand=Record&$select=Record/RecordKey,Record/Title,

Record/RecordType_Summary,Record/Extension,Record/State_Value"

}

Adjusting the JSON file - $Select clause not specified

If the JSON report does not contain a specific $Select clause for the underlying table, all
fields are by default selected, including the RecordKey and State_Value fields and you do
not need to specifically include the RecordKey and State_Value fields.

In the Report JSON example, Case report (See Also section below), the $Select statement in
the Odata query is not needed and not specified. Therefore, the query does not specify the
RecordKey and State_Value fields and all fields, including the RecordKey and State_Value
fields, are selected by default.

...

"FileRecords": [

{

"#Query": "('@RecordKeys')?$expand=Parties/Name&$filter=Pax

ne 'A'",

"SupplementaryDocuments": [

{

"#Query": "?$expand=Parties/Name"

}...

Troubleshooting custom reports and tips

Preview the report or JSON file

Use the Accept setting in the Post request Report API to view the resulting file as a JSON
file, a Word/Excel document, or a PDF document. This enables you to track and view the

53

WorkZone PDF 2021.3

faulty report in any of the three of the report stages:

l The Report JSON file

l The Word/Excel document

l The PDF document

Tip: You can also use Fiddler (or other 3rd party Web debugging tools) to create and
verify your reports.

Reports with included document contents

If you want the report to include document contents, the report request must contain the fol-
lowing parameter IncludeDocumentContents=true.

See the Report API documentation.

Additionally, the following fields must be specified in the OData queries of the Report
JSON file so that the PDF engine can recognize the document and retrieve the fields.

l RecordKey

l State_Value

The date is not displayed in the expected format

Please see the solution here.

54

https://docs.workzone.kmd.net/2021_3/en-us/Content/WZPDF_AdminGuide/Troubleshooting.htm

Developer Guide

PDF options
When creating PDF documents you can define various PDF in the report file to further define
the contents of the PDF file when generated.

The following PDF options can be used:

l Server side document merging: Merge PDF documents in one PDF document on the
WorkZone server. See Remerging documents.

l Custom Headers/Footers: Define your own header or footer globally or for each
PDF document and define the alignment and placement of the header or footer as
well. See Headers and footers.

l Global Page numbering: Number all pages of a global PDF document or report in the
header or footer of the document. See Global page numbering.

Custom headers and footers

You can specify custom header and footer texts, merging document data with your own text
instead of using the default header and footers for the report. The headers and footers can
have global or local scope, depending on the documents in question.

Custom headers and footers can be specified as custom text or as placeholders. The place-
holders can in their turn also contain custom text and/or document data.

Custom text

Headers and footers can be added to the report as custom text only, with the defined text
being generated on each page of the report.

Example: Free text

Header: "Confidential - do not distribute!"

In this example, each and every page of the report document will contain the header text: Con-
fidential - do not distribute!

You can define header and footer alignment, margins as well as style (font size and colors) to
further customize your report headers and footers.

55

WorkZone PDF 2021.3

Placeholders

Headers and footers can also contain placeholders. Placeholders can be used to contain and
display document data retrieved directly from the document itself. Placeholder values can also
be defined directly in the report JSON and you can define custom text in the placeholders.

Placeholder custom text can also be combined with document data in the placeholders and a
placeholder can contain multiple instances of custom text and document data.

Custom text in placeholders

You can specify custom text within the placeholder itself by entering the custom text in quo-
tation marks within the placeholder brackets. { }. You can combine the placeholder custom text
with placeholder tokens, creating labels or descriptive text for your tokens.

Example: Placeholder custom text with the Title token.

Header: "{"Title of document: " Title}"

If the value of the placeholder token Title is "Annual Report", the header will be displayed
as: Title of document: Annual Report.

Document data in placeholders

Tokens are used in the placeholders to display document data. The relevant document data
will be populated in the placeholder token when the report is run. The tokens conform to the
field codes in Microsoft Word in order to maintain a degree of recognition with the Microsoft
Word field codes.

You can combine the tokens with custom text in the place holder and you can specify multiple
tokens and custom texts within a single placeholder. Placeholders with multiple custom texts
and tokens can be complex and difficult to decipher but might be necessary as you only can
define one header or footer per document. You can define multiple placeholders though.

56

Developer Guide

Note: The placeholder tokens are placed without including spaces. You must explicitly
define and insert any required spaces within quotation marks.

Including quotation marks in the placeholder custom text

You can include quotation marks in the placeholder custom text by using a backslash
before the quotation mark.

Example: Include quotation marks in placeholder text

Header: "{"Placeholder text "\"Quotation text\"" More

placeholder text}"

Result: Placeholder text: "Quotation text" More placeholder text

Placeholder tokens

When you use the Select clause in the report JSON, all the properties of the record that is
selected are available as placeholder tokens and can be updated with actual values retrieved
from OData (e.g. FileKey, PostList, DocLength, etc).

You must include the document contents to the report by setting IncludeDocumentContents
parameter to True in the related POST request to the Reports API. The record’s properties
and tokens will then updated with actual values on the record’s pages inside the report,
whereas all the other pages of the report would not be updated.

No Select clause in the report JSON

When there is no explicit Select clause in the Report JSON, all fields are considered to be
selected and are therefore also available as placeholder tokens, for example if a report query
selects the whole record (Record is present in the query but no select clause for specific
fields), all the record’s properties will be available as placeholder tokens.

Expanded tables in the report JSON

Fields accessed through the Expanded command to the Record table in the report JSON are
also available as placeholder tokens for headers and/or footers in the document, including

57

WorkZone PDF 2021.3

custom fields have been added to the Record (Case), File (document) or contact (Contact)
tables.

For an example of an Expand command, see Create the Report JSON file

Note: Custom fields are created and maintained in the WorkZone Configurator module.

Additional placeholder tokens

The following additional placeholder tokens can be used in the header and footer:

l {Title}: The document title – either an original file name or an empty string if not
provided.

l {Date}: The current date based on defined culture settings. You can use the
AcceptLanguage request HTTP header to set the culture to be used by the
WorkZone PDF to handle the request. For example the date format DD.MM.YYYY or
DD.MM.YY is particular to Denmark while MM/DD/YYYY is particular for the United
States.

l {Page}: The current page number of the document.

l {Numpages}: The total amount of pages in the document.

l {Caption}: Return the report caption, if a caption has been defined.

The placeholder tokens can be used in any combination, even with additional text.

Headers or footers defined as an HTTP header will be global for all documents. Headers or
footers defined in the JSON request body will override any defined global header or footer for
the specific document where it is declared.

Example: Multiple tokens in a placeholder

Header: "{Page " of " Numpages}"

Result: If Page is 2 and Numpages is 25, the result will be: Page 2 of 25.

58

Developer Guide

Empty document data

If the document data for a token in a placeholder is empty, that token will be displayed as an
empty value and any defined custom text will be displayed.

However, if all the values of all the tokens in a placeholder are empty, the entire placeholder
will not be displayed, even if there is custom text defined in the placeholder.

This enables you to display header or footer text only when related tokens are populated with
data on record-related pages and not display header or footer text on other report pages - for
example Case-related pages or report cover pages.

Example: Empty tokens

Header: "{"State is " State ", Type is " Type }"

In this example, the header result will depend on the values of the tokens: State and Type.

Token val-
ues

State = A State empty

Type = B State is A, Type is B State is "", Type is B

Type
empty

State is A, Type is "" ""

Note: When both tokens are empty, the entire placeholder will not be displayed. As
long as a single token contains a non-empty value, the placeholder will be displayed.

Places where headers and footers can be defined

Customized headers and footers for PDF documents are specified in the same fashion as spe-
cifying custom headers and footers for reports and use the same placeholder tokens. Custom
headers and footers, like nearly all parameters can be defined in the following places:

59

WorkZone PDF 2021.3

l In the Database configuration itself.

l In the HTTP headers for the entire request

l In the POST request body root of the request

l In the POST request body local for the request for the specific document

l In the GET URI

The list above starts at a global level, applying the header/footer parameter setting to all doc-
uments and then gets more specific to the individual document, depending on where the head-
er/footer parameters are defined.

Locally defined parameter settings will override more globally defined parameter settings, for
example a header defined in the GET Uri of the document will override any settings defined in
the POST request, HTTP headers and Database configuration.

For more information about PDF headers and footers, see API documentation

Header and footer alignment and margins

You can define the alignment and as well as set the margins for your custom headers and foot-
ers in the document.

Alignment

Use the HorizontalAlignment and Verticalalignment parameters to define the alignment of
the custom headers and footers in the report.

The following alignment settings can be specified for the parameters:

l VerticalAlignment:

l Top

l Middle

l Bottom

l HorizontalAlignment:

l Left

l Center

l Right

60

Developer Guide

Margins

You can also adjust the placement of the custom header or footer relative to the page edge
(the page height and width) by using the HorizontalMargin and VerticalMargin parameters.

You must specify the number of points (in apostrophes) to adjust the margin as an offset, rel-
ative to the page edge. The custom margin uses the header or footer alignment as the starting
point.

Note: The horizontal and vertical margin points are defined as 72 points per inch.

Horizontal margin specified for a right-aligned header.

HeaderStyle {HorizontalAlignment: 'Right',

HorizontalMargin: '10' },

The horizontal margin parameter offsets the header by 10 points, relative to the right edge of
the page, using the right-aligned header as the starting point.

Examples of custom headers and footers

The following are examples of various headers and footer texts and tokens.

Example: Tokens

Header: "{Page} of {Numpages}"

Note: If the Page is 1 and Numpages is 45, the placeholder token will result in the
header text “1of45” on the first page of a 45 page document.

If you want to include spaces in order to convert the header more readable, you must spe-
cifically define the required spaces like so:

Header: "{Page} " of " {Numpages}"

The result of this header is "1 of 45".

61

WorkZone PDF 2021.3

Footer syntax

Footer: "Page {page}" of "{numpages}"

Where the Footer is an HTTP header. The footer text will be “Page 1 of 45” on the first page of
a 45 page document.

Example: Footer syntax with a single placeholder and multiple placeholder tokens and
multiple placeholder custom texts

Footer: "{"Page " Page " of " Numpages}"

The footer text will be “Page 1 of 45” on the first page of a 45 page document.

Example: Header syntax

{Documents: [{Uri: 'file:///d:/AnnualReport.msg', Header:

'This is a local header'}]}

Note that the header or footer can be plain text as the "This is a local header" text illustrates.

Header and footer style examples

Footer: "Page {page} of {numpages}"

FooterStyle: { VerticalAlignment: 'Top', HorizontalAlignment:

'Left' }

{

"Watermark": "Global Watermark",

"WatermarkStyle": { "Color": "Black", "Transparency": "33",

"Font": "Arial"},

"Header": "Global header",

"Footer": "Global footer",

"Documents": [

{

"Uri": "file:///d:/AnnualReport.msg",

62

Developer Guide

"Title": "Custom title",

"Watermark": "Local Watermark",

"WatermarkStyle": {"Color": "Cyan", "Transparency": "55",

"Font": "Algerian"},

"Header": "This is local header",

"HeaderStyle": { "HorizontalAlignment": "Center", "Hori-

zontalMargin": "10", "Font": "Algerian", "FontSize": "10", "Fore-

groundColor": "Blue", "BackgroundColor": "Transparent",

"Opacity": "0.75",

"HorizontalScaling": "1"

},

"Footer": "This is local footer.",

"FooterStyle": {

"Bold": false,

"Font": "Arial"

}

}

]

}

In this example, there is a global header and footer each being overwritten by a local, doc-
ument header and footer defined later n the document section.

The document header is centered, with a 10 pixel offset margin and uses the Algerian font
with a font size of 10 and a Blue font color.

The document footer style is more subdued, containing only the Arial font.

Example: Complex header with multiple tokens, placeholder custom text and quotation
marks within the text

Header: "Confidential! {"Print \"date\" is:" date ". Page: "

page} of {Numpages}"

In this example, the Date is 05/06-2018, the Page is 3 and the Numpages is 23, the header
text would look like this:

Confidential! Print "date" is 05.06.2018. Page: 3 of 23

63

WorkZone PDF 2021.3

Note the date formatting will depend on your local date settings.

Watermarks in reports

You can add your own custom texts as watermarks in reports in the Report JSON file. Water-
marks can be defined either globally for all documents in the request or at the document level
- for each individual document.

Note: A watermark defined at the document-level will take precedence over any glob-
ally defined watermarks.

The watermark custom text is defined in the Watermark parameter while the watermark styling
is defined using the WatermarkStyle parameter.

Watermark parameter

When you define the watermark text, you must include the text in quotation marks like this:

Watermark: "Draft Version"

WatermarkStyle parameter

Watermark text can be styled using the following style options:

l Color: The color of the watermark text. Enter any valid html string format such as
standard color name, hex value, and RGB colors. For example: Standard color name:
Red or Hex value: #FF0000 or RGB: 255,0,0

l Transparency: The transparency level of the watermark text. Most watermark text is
faintly transparent to avoid overshadowing the main document text. Enter a value
between 0 (not transparent) and 100 (completely transparent)

l Font: Enter a font name. The font must be accessible on the machine running the
report. You do not need to specify font size as the watermark will automatically be re-
sized to fit the page.

64

Developer Guide

Example: Watermark and WatermarkStyle

{

"Watermark": "Global Watermark",

"WatermarkStyle": { "Color": "Black", "Transparency": "33",

"Font": "Verdana"},

"Documents": [

{

"Uri": "file:///d:/AnnualReport.msg",

"Title": "Custom title",

"Watermark": "Local Watermark",

"WatermarkStyle": { "Color": "Cyan", "Transparency": "40",

"Font": "Arial"}

}]

}

In this example, the global watermark "Global Watermark" is superseded by the "local Water-
mark" watermark on the local document. Note the formatting is also changed for the water-
mark of the local document.

Global page numbering

When creating a global PDF document based on one or more documents, you can number all
pages in the global PDF document or report and display the page numbering in either the
header or the footer of the PDF documents or of the report.

Microsoft Word field codes ({page} and {numpage} are used as placeholder tokens for the
page numbers.

Example: Page numbering

l {page} of {numpage} (da. {page} af {numpage})

l Page {page} (da. Side {page})

l {page}

65

WorkZone PDF 2021.3

Where {page} is the page number and {numpage} is the total number of pages in the global
PDF document.

Tip: Do not include page numbering functionality on the individual report templates, as
this will result in two different page numberings on the document -one from the report
itself and one from the PDF version of the report. If the report PDF also is part of a lar-
ger, aggregated PDF document, the two page numbering systems may display different
values, formats and placement.

For more information about global page numbering of the global PDF document, see API doc-
umentation.

Remerging documents

If you convert a Word document to PDF, you can update values of its content controls just after
the conversion and later on whenever you need them to be updated. To do this, first you need
to prepare the document for remerging and then remerge it. Note that this is not the global func-
tionality of WorkZone PDF Engine, so you have to define the specific information in the POST
requests to WorkZone PDF Engine.

Tip: The POST request can be sent in the JSON or Multipart Streams format.

Step 1 — Preparation for remerging

To prepare a Word document for remerging, send the POST request to WorkZone PDF
Engine with the following information:

l Word document for which you want to use the remerging functionality

l Titles of content controls whose values you want to update

See example of content control's title

Content control title in a regular mode:

66

Developer Guide

Content control title in a design mode:

Note: You have to specify the exact title in the requests.

In these examples, the exact title is: The latest letter date [dd-mm-yy].

When converting multiple documents to one PDF, documents that are supposed to be
remerged should be placed first in the request body and the documents that are not supposed
to be remerged should be placed last.

Once this information is sent, it is saved in the resulting PDF document's custom properties.

Step 2 — Remerging

To replace old values with the new ones, send another POST request with the following
information:

l PDF document for which you want to use the remerging functionality

l Titles and new values of content controls

The WorkZone PDF service updates the values.

For more information about remerging documents, see WorkZone PDF API documentation.

Server side document merging

The PDF engine contains an API which enables you to perform document merging directly on
the server using content controls and OData references.

67

WorkZone PDF 2021.3

Prerequisite: WorkZone for Office must be installed in order to use the server-side doc-
ument merging.

68

Developer Guide

Terms and conditions

Intellectual property rights

This document is the property of KMD. The data contained herein, in whole or in part, may not
be duplicated, used or disclosed outside the recipient for any purpose other than to conduct
business and technical evaluation provided that this is approved by KMD according to the
agreement between KMD and the recipient. This restriction does not limit the recipient’s right
to use information contained in the data if it is obtained from another source without restriction
set out in the agreement between KMD and the recipient or by law.

Disclaimer

This document is intended for informational purposes only. Any information herein is believed
to be reliable. However, KMD assumes no responsibility for the accuracy of the information.
KMD reserves the right to change the document and the products described without notice.
KMD and the authors disclaim any and all liabilities.

Copyright © KMD A/S 2021. All rights reserved.

69

	Developer Guide for WorkZone PDF 2021.3
	Related product documentation
	WorkZone links

	What's new in WorkZone PDF
	Changes in Microsoft Word templates of custom reports
	Adjusted PDF remerge logic

	API documentation
	Open the API documentation
	Localization and language
	If the Accept-Language header has been specified
	If the Accept-Language header is not specified

	WorkZone PDF configuration
	About WorkZone PDF Engine configuration settings
	Missing parameters
	Parameter priorities

	Defining parameters for multiple instances of the PDF Engine
	Create parameter settings for PDF Engine instances
	Unique instance names
	Default instances

	Specify the PDF Engine instance in the web.config file
	Incorrect Target parameter
	Custom Parameters not in the database

	Custom reports
	Standard and custom reports
	View reports
	About custom reports
	Custom reports overview
	OData queries and Word/Excel templates
	Report JSON file
	Install the report
	The custom report creation process
	The custom report creation process

	Localization of custom report templates
	Localizing content controls

	Report references
	The properties of the report references
	Report ID
	Bindings
	Order

	Create a report template
	The OData query
	Create OData queries

	Create the Report JSON file
	The Report JSON file contents
	The OData query section in the Report JSON file
	Report JSON example

	Create the XML model and the report templates
	Creating the XML Model
	The GET action

	Additional options
	Localizing the XML model

	Create the Word template
	To create the Word template
	Additional options
	View the OData queries
	View the XML Model

	Add the content controls
	Content control properties
	Repeating content controls
	Nested repeating content controls

	Placeholder text in content controls

	Example – Custom report Word template

	Create the Excel template
	Generate Excel template
	Customize Excel template
	Manually
	By using formulas

	View OData query and XML model

	Create the HTML template
	Change logo in the report

	Distribute custom reports to WorkZone Content Server

	Update
	Update XML model
	Update template body
	Update the XML model and the templates
	See Also

	Preview custom reports by using the POST request
	The KMD WorkZone PDF.exe program

	Report options
	Report options
	PDF options
	Cover pages

	Troubleshooting custom reports and tips

	PDF options
	Custom headers and footers
	Custom text
	Placeholders
	Custom text in placeholders
	Document data in placeholders
	Including quotation marks in the placeholder custom text

	Placeholder tokens
	No Select clause in the report JSON
	Expanded tables in the report JSON
	Additional placeholder tokens
	Empty document data

	Places where headers and footers can be defined
	Header and footer alignment and margins
	Alignment
	Margins

	Examples of custom headers and footers

	Watermarks in reports
	Watermark parameter
	WatermarkStyle parameter

	Global page numbering
	Remerging documents
	Step 1 — Preparation for remerging
	Step 2 — Remerging
	Server side document merging

	Terms and conditions
	Intellectual property rights
	Disclaimer

