
2022.0

Developer Guide

WorkZone Process 2022.0

Contents

Developer Guide for WorkZone Process 2022.0 16

This guide 16

Target groups 16

Required skill level 16

Related product documentation 17

WorkZone links 17

What's new 18

New features in WorkZone Process 2022.0 18

New OAuth2 properties 18

Plugins 19

SmartPost 19

PowerShell script to start a SmartPost process 19

OpenCase parameter 19

Case activities 20

Selector controls were upgraded 22

Data model changes 22

Case activity graphs available for workflows 22

Integration 23

New form types 23

Architecture 24

Overview 24

WorkZone Overview 24

WorkZone Process components 25

Agent server installations 26

Web server installations 26

Host architecture 27

The Workflow Host 28

2

Developer Guide

Persistence with timeouts 28

The WCF Webservice 28

Activity library 28

Tracking Participants 29

Base 29

WZP Process Package Development 30

Configure packages 30

Example 31

Form configuration 32

Basic form configuration 32

Example 32

SmartTask form configuration 33

Example 33

Standard DataContextDefinition controls 34

SharedDataContextDefinition 36

Example 36

Example 37

Details Section control 37

Example 38

About plugins 39

Extend packages using plugins 42

Process designer 45

Configure phase processes 45

The phase process 45

Building a phase process 45

PhaseProcess activity 45

PhaseContainer activity 45

Edit workflow properties 46

3

WorkZone Process 2022.0

Phase activity 46

SimplePhase activity 49

UpdatePhase action 49

UpdatePhase state 49

Schedule activity 49

IsStringNullOrWhiteSpace 49

Configuring the activity placeholders 49

CreateProcess 49

SimpleUserTask 49

Sequence 49

Defining the process in the package.xml file 50

The context section 54

Deadline principles 54

Deadline rules 54

Phase events 56

Configure sub processes 57

Workflow process modelling 57

Create a new process 58

Standard activities 58

Workflow development 61

Activities 61

Building custom activities 61

Code Activities 61

Phase activities 62

Configuring phase names in multiple languages 62

Configuring Phase Start Time and End Time logic 62

Configuring phase events 62

Testing workflows 62

4

Developer Guide

Workflow activity logging 63

Tracking participants 63

Tracking Profiles 65

WorkflowInstanceRecords 65

ActivityScheduledRecords 65

ActivityStateRecords 65

BookmarkResumptionRecords 65

CancelRequestedRecords 65

FaultPropagationQueries 66

CustomTrackingRecords 66

Other tracking records 71

HostTrackingrecords 72

WorkflowInstanceTerminateRecords 72

WorkflowInstanceUnhandledexceptionRecord 72

Document flow 72

The forms concept 83

Upgrade selector controls from 2016 to 2016 R2 83

Forms 85

Form view 85

Init form 90

Actor sequences in smart task Init forms 90

Example: A wzp:selector with a wzp:sequence-mask-selector control for an
Init form: 91

Example: A wzp:rollbackselector with a wzp:sequence-mask-selector control
for a Smart Task: 92

Init form container interface 93

Edit form 96

Definition: 97

Default Edit form html file 97

5

WorkZone Process 2022.0

Default Edit form controller (JS) file 100

Edit form container 100

Smart tasks container 101

Smart task container interface 101

Interface of feed type 103

Passing json data 103

Smart task container initialization sequence 103

Smart task metadata XML schema 104

Response Templates 106

Actions 106

Forward 106

Update 106

Newmethods in the Smart Task Container Interface 107

Properties 107

Functions 107

Case activity form 108

Case activity container 108

Containers 108

Standard container 108

Building custom form containers 109

Changes in the interaction between Container and form controls 109

Changes in the form controllers 109

Support of custom containers 109

Support for dirty marking in containers (Dirty Marking API) 110

Controls 111

Upgrade selector controls from 2016 to 2016 R2 111

Form basic controls 113

Editable controls in smarttasks 114

6

Developer Guide

About components 114

The wzp.rollbackselector control 114

Data context 114

Examples 115

Add filters in the wzp.controls 116

Filtering options for the Init form 116

Filtering options for the smarttask form 119

Control specification 121

Examples 121

Controller and converter functions 122

Сontroller structure 123

Examples of an item converter 124

Example of item converter for editing documents 124

Example of item converter for editing actors 125

Example of a result converter for editing documents 126

Example of a result converter for editing actors 127

Example of result converter for editing actors 128

Wzp:rollbackselector-panel control 128

Control specification 129

Example 129

Configure expanding/collapsing a wzp:rollbackselector section 129

HTML 129

JavaScript + Angular code 130

Response Template population 131

Response structure 131

Populating actor changes 133

Populating document changes 133

Add a filter control in The <wzp-multi-selector> and <wzp:rollbackselector> 134

7

WorkZone Process 2022.0

parent controls

Form localization 134

Configuring POEditor to work with WZP forms localization resources 135

Add or remove new string key in localization resources 136

Processes overview 137

Filtering 137

Domain Restriction filters 137

Register filter 138

Default filter and filter precedence 138

SmartPost 140

Create a SmartPost dispatcher 140

Compile and install the sample dispatcher 140

Load the package 141

Upgrade configuration 141

Configure the dispatcher 142

Test the sample dispatcher 142

Add the sample dispatcher to a dispatch sequence 143

Use the sample dispatcher 143

Test the sample dispatcher 144

SmartPost dispatcher classes, interfaces, and attributes 144

Implement IDigitalPost interface 145

Properties 145

Implement IDigitalPostSenderConfigurator interface 146

Methods 146

Example 147

Implement IDigitalPostSender interface 147

Methods 147

Properties 149

8

Developer Guide

Exception handling 149

Implement IMessageShipmentHandle interface 149

Properties 150

Implement IMessageShipmentState interface 150

Properties 150

Use of ValidationResult class 150

Properties 150

Methods 151

Example of definition and use of error message 151

Implement DigitalPostDispatcherConfigurator class 152

Properties 152

154

Deploy a SmartPost dispatcher 154

Configure SmartPost PartyIdentifierSources 154

Design 155

Factory pattern implementation 155

Utility method(GetPartyIdentifier) 155

Use of the GetPartyIdentifier method in the IdentifierSourceUtilities class 156

Configuration of the GetPartyIdentifier method 156

The standard configuration 157

Configuration of a factory 158

ODataPartyIdentifierSource 158

Configuration 159

A configuration example of the ODataPartyIdentifierSource 159

Customized implementation 160

Configure SmartPost ContactAddressSources 161

Design 161

Factory pattern implementation 162

9

WorkZone Process 2022.0

Utility method (GetContactAddressKeys) 162

Use of the GetContactAddressKeys method in the Iden-
tifierSourceUtilities class 162

Configuration of the GetContactAddressKeys method 163

Example: The standard configuration of the factory 163

Configuration of a factory 164

class="information_block"> ODataContactAddressSource 165

Configuration 165

A configuration example of the ODataContactAddressSource 166

Customized implementation 167

Integration 169

Start a SmartPost process using a script 169

Example 172

Web services 182

Creating workflows 182

Get available processes 182

Get information for starting a process 182

Get a form 183

Start a process 183

Workflow service 183

Webservice 183

Host 184

Interface types 189

WorkflowCreationData 190

WorkflowStatus 191

RunningWorkflowInformation 191

WorkflowDescriptor 192

WorkflowType 193

10

Developer Guide

OData actions 193

WzpWorkflowInstance 193

WzpUserTask 193

Usage of oData custom actions 194

Usage in C# using the Scanjour.Process.Odata.Client 194

Usage in JavaScript 194

Database 195

Process configuration registers 195

WZP_PACKAGE 195

WZP_PROCESS 196

WZP_WORKFLOW 196

WZP_PROCESS_WORKFLOW 197

WZP_PROCESS_PARAMETER 197

WZP_SERVICE 198

WZP_SERVICE_PARAMETER 198

WZP_ASSEMBLY 198

Process configuration tables 199

WZP_PACKAGE 199

WZP_PROCESS 199

WZP_PROCESS_WORKFLOW 200

WZP_ASSEMBLY 201

WZP_PROCESS_NAME 201

WZP_PROCESS_DESC 202

WZP_PROCESS_PARAMETER 202

WZP_SERVICE 203

WZP_SERVICE_PARAMETER 203

WZP_WORKFLOW 204

WZP_WORKFLOW_CONTEXT 205

11

WorkZone Process 2022.0

Process forms registers 205

WZP_FORM 205

WZP_FORM_DATA 206

WZP_FORM_ASSET 206

WZP_WORKFLOW_FORM 206

Process forms tables 207

WZP_FORM 207

WZP_FORM_VIEW 207

WZP_FORM_CONTROLLER 208

WZP_FORM_DATA 208

WZP_WORKFLOW_FORM 208

WZP_FORM_ASSET 209

Process instance registers 209

WZP_WORKFLOW_INSTANCE 209

WZP_WORKFLOW_INSTANCE_ELAB 211

WZP_LOCK_INSTANCE 211

WZP_WORKFLOW_INSTANCE_RECORD 212

WZP_WORKFLOW_LOG 212

Process instance tables 212

WZP_INSTANCE_ARGUMENT 212

WZP_WORKFLOW_INSTANCE 213

WZP_WORKFLOW_LOG 214

WZP_WORKFLOW_STREAM 215

WZP_INSTANCE_BOOKMARK 215

WZP_WORKFLOW_INSTANCE_ELAB 216

V_WZP_LOCK_INSTANCE 216

V_WZP_WORKFLOW_INSTANCE_RECORD 216

WZP_HISTORY 217

12

Developer Guide

WZP_WORKFLOW_PROFILE 218

Process task registers 219

WZP_USER_TASK 219

WZP_OPEN_USER_TASK 220

WZP_USER_TASK_ATTACHMENT 220

WZP_USER_TASK_INSERT 220

WZP_TASK_STATUS 221

WZP_HISTORY 221

WZP_PHASE 221

Process task tables 222

WZP_PHASE 222

WZP_TASK_STATUS 223

WZP_USER_TASK_TITLE 224

WZP_USER_TASK_ATTACHMENT 225

WZP_USER_TASK_RECORD 225

WZP_USER_TASK 226

V_WZP_OPEN_USER_TASK 228

WZP_HISTORY 229

WZP_HISTORY_DESC 230

V_WZP_MY_OPEN_TASK 230

V_WZP_MY_OU_OPEN_TASK 231

V_WZP_TASK_ERROR 231

Miscellaneous registers 231

WZP_PROXY 231

WZP_FILE_USER_RIGHT 232

WZP_SETTINGS 232

WZP_SEQUENCE_MASK 232

WZP_PUSH_SUBSCRIPTION 233

13

WorkZone Process 2022.0

WZP_MAIL_NOTIFICATION 233

Miscellaneous tables 233

WZP_PROXY 233

V_WZP_FILE_USER_RIGHT 234

WZP_SETTINGS 234

WZP_PUSH_SUBSCRIPTION 234

WZP_SEQUENCE_MASK 235

WZP_SEQUENCE_MASK_ITEM 236

Case activity registers 236

WZP_CASE_ACTIVITY 236

WZP_CASE_ACTIVITY_HISTORY 237

Case activity tables 237

WZP_CASE_ACTIVITY 237

WZP_CASE_ACTIVITY_TITLE 239

WZP_CASE_ACTIVITY_HISTORY 240

SmartPost registers 241

WZP_IDENTIFIER_SOURCE 241

WZP_EXCEPTION_CLASS 241

WZP_EBOKS_MATERIAL 241

WZP_NAME_EXTENSION 242

WZP_EBOKS_SUBSCRIPTION 242

WZP_SHIPMENT_TYPE 242

WZP_SHIPMENT_TYPE_ORDER 242

WZP_REMOTE_PRINT_TYPE 243

WZP_SMARTPOST_LOG 243

WZP_SMARTPOST_RECIPIENT 243

WZP_SMARTPOST_ATTACHMENT 244

WZP_DISPATCHER 244

14

Developer Guide

WZP_DISPATCHER_PARAMETER 244

SmartPost tables 244

WZP_FILE_EXTENSION 244

WZP_IDENTIFIER_SOURCE 245

WZP_EBOKS_MATERIAL 246

WZP_EBOKS_MATERIAL_NAME 247

WZP_NAME_EXTENSION 247

WZP_EBOKS_SUBSRIPTION 248

WZP_SHIPMENT_TYPE 248

WZP_SHIPMENT_TYPE_NAME 248

WZP_SHIPMENT_TYPE_ORDER 249

WZP_REMOTE_PRINT_TYPE 249

WZP_REMOTE_PRINT_TYPE_NAME 250

WZP_SMARTPOST_LOG 251

WZP_SMARTPOST_RECIPIENT 251

WZP_SMARTPOST_ATTACHMENT 252

WZP_DISPATCHER 252

WZP_DISPATCHER_NAME 253

WZP_DISPATCHER_PARAMETER 253

Enable Telerik Fiddler tracing 254

Enable Fiddler 254

Uncomment Fiddler tracing in the web.config file 254

Terms and conditions 256

Intellectual Property Rights 256

Disclaimer 256

15

WorkZone Process 2022.0

Developer Guide for WorkZone
Process 2022.0

With WorkZone Process you can automate work processes and you can work with pro-
cesses

directly in Microsoft Outlook using WorkZone for Office or in WorkZone Client.

This guide

This guide describes how you can configure processes for WorkZone Process. It also cov-
ers more advanced topics about extending WorkZone Process with additional features and
about integrating WorkZone Process from third party platforms.

Target groups

The main target groups of this guide are:

l Business analysts who want to create simple configurations of work processes
and the forms applied in the processes.

l Business analysts who want to create simple configurations of work processes
and the forms applied in the processes.

l Developers who want to create complex configurations and customizations.

Required skill level

To implement minor changes and additions in WorkZone Process, you do not need to be
specialized within programming languages such as C# or to poses any other advanced
development skill sets.

A basic understanding of the technologies mentioned below will enable you to start devel-
oping processes in Visual Studio and with a good overview of WorkZone Process work pro-
cesses you can accomplish a lot by looking at the existing implementations.

16

Developer Guide

The amount of prior experience that is required to work with process configurations for
WorkZone Process depends on what you want to do.

l In general you must be familiar with Business Process Model and Notation (BPMN)
and process modeling tools.

l You must also have a basic understanding of HTML and JavaScript.

Additional skill sets are recommended for the following tasks.

l To build workflows: Ability to work with Visual Studio and C#.

l To work with more advanced areas such as custom activity libraries: Experience with
Windows Workflow Foundation.

l To build workflows forms: Knowledge and experience with HTML , Javascript, and lib-
raries such as JQUery and Angular.

l To build your own form controls: experience with HTML, Javascript, Angular, and
JQuery.

Related product documentation

l WorkZone Process User Guide

l WorkZone Process Administrator Guide

l WorkZone Configurator Administrator Guide

WorkZone links

l WorkZone support

l WorkZone website

l WorkZone portal

17

https://docs.workzone.kmd.net/2022_0/en-us/Content/WZP_UserGuide/Home.htm
https://docs.workzone.kmd.net/2022_0/en-us/Content/WZP_AdminGuide/Home.htm
https://docs.workzone.kmd.net/2022_0/en-us/Content/WZCnF_AdminGuide/Home.htm
http://support.kmd.dk/
https://www.kmd.dk/loesninger-og-services/loesninger/enterprise-information-management
https://workzone.kmd.net/

WorkZone Process 2022.0

What's new

New features in WorkZone Process 2022.0

No changes in this release.

WorkZone Process 2021.3

No changes in this release.

WorkZone Process 2021.2

No changes in this release.

WorkZone Process 2021.1

No changes in this release.

WorkZone Process 2021.0

No changes in this release.

WorkZone Process 2020.3

New OAuth2 properties

All container interfaces, such as the init, edit, smart task, and case activity interfaces have
been extended with three new properties string odataUri, string processUri, and object
AuthorizationHeader. See Init form container interface, Edit form container, Smart tasks
container, and Case activity container.

Use these properties when you build forms that will run on an environment that is con-
figured with OAuth authentication.

WorkZone Process 2020.2

No changes in this release.

WorkZone Process 2020.1

18

Developer Guide

No changes in this release.

WorkZone Process 2020.0

l The SDK now includes a sample SmartPost dispatcher, which can be used as a
starting point for create a customized dispatcher. See Create a SmartPost
dispatcher.

WorkZone Process 2019.3

No changes.

WorkZone Process 2019.2

No changes.

WorkZone Process 2019.1

Plugins

The SimpleMergeDocumentsToPdf activity now supports the ability to specify a plugin that
allows additional properties to be set on the resulting PDF document metadata used in the
ExternalCommunication package. See About plugins and Extend packages using plugins.

SmartPost

PowerShell script to start a SmartPost process

A new sample PowerShell script that shows how you can start a SmartPost process. The
script replaces the C# example. See Start a SmartPost process using a script.

OpenCase parameter

A new OpenCase parameter that opens a closed case so that it is possible to send
SmartPost messages. The parameter is only used if you want to integrate from another sys-
tem.

19

WorkZone Process 2022.0

Case activities

The documentation that describes how to create and deploy case activity lists based on
DCR processes has been moved to Case activities in the WorkZone Process Admin-
istrator Guide.

WorkZone Process 2019.0

No changes.

WorkZone Process 2018.2 SP1

No changes.

WorkZone Process 2018.2

No changes.

WorkZone Process 2018.1

No changes.

WorkZone Process 2018.01

l You can configure the SmartPost process comply with customized of locations of
CVR and CPR numbers in the database. See Configure SmartPost PartyIden-
tifierSources (sending) and Configure SmartPost ContactAddressSources (receiv-
ing).

WorkZone Process 2018

l The topics on case activities have been revised.

l You can now create a DCR process based on a default WorkZone template.

l You can now use Fiddler for debugging. See Enable Telerik Fiddler tracing.

l The Configure packages topic has been extended with a description of DataCon-
textDefinition controls and a new details section control.

l The WorkZone Client form container now supports a Dirty Marking API. See Sup-
port for dirty marking in containers (Dirty Marking API).

20

http://help.workzone.kmd.dk/wzp/2019_1/InstallGuide/#Case Activities/CaseActivities_introduction.htm%3FTocPath%3DCase%2520activities|_____0

Developer Guide

WorkZone Process 2017 SP1

l New document filter control <wzp:document-selector-filter>.
A new control for filtering documents in <wzp-multi-selector> and <wzp:roll-
backselector> has been introduced. The new <wzp:document-selector-filter> control
replaces the <wzp:filter-selector> control, which is now obsolete. Configuration of
new control is identical for SmartTask and InitForm.
For more information, see To add a filter control in the <wzp-multi-selector> and
<wzp:rollbackselector> parent controls.

l New sequence mask control <wzp:sequence-mask-selector-filter>.
A new control for selecting actors from sequence masks in <wzp-multi-selector> and
<wzp:rollbackselector> has been introduced. The new <wzp:sequence-mask-
selector-filter> control replaces the <wzp:sequence-mask-selector> control, which is
now obsolete. Configuration of new control is identical for SmartTask and InitForm.
For more information, see To add a sequence-mask control in the <wzp-multi-
selector> and <wzp:rollbackselector> parent control.

l Obsolete filter controls and controller.
The following filter controls and controllers are obsolete and should be removed
from the html:

l wzpInitFormFilterForSelectorCtrl

l wzpSmartTaskFilterForSelectorCtrl

l wzpInitFormSequenceMaskForSelectorCtrl

l wzpSmartTaskSequenceMaskForSelectorCtrl

l New contact type filter: <wzp:contact-type-selector-filter>.
A new control for filtering contacts and addreses by contact type for <wzp-multi-
selector> and <wzp:rollbackselector> has been introduced. Configuration of new
control is identical for SmartTask and InitForm.
For more information, see To add the control in <wzp-multi-selector> and <wzp:roll-
backselector> parent control

l The RollbackSelectors have been updated.

WorkZone Process 2017

21

WorkZone Process 2022.0

Selector controls were upgraded

In WorkZone Process 2017 the selector controls in forms have been upgraded. For more
information about the upgrade, see Upgrade selector controls from 2016 to 2016 R2.

Two elements were removed from the html forms:

wzp-usertask-rollbackselector-panel-helper: Previously this attribute was
used in "<ui:usertask ng-controller="ApproveTaskCtr" ui-intl-

l="task.Submission." formname="taskform" wzp-usertask-roll-

backselector-panel-helper>". From now on, you can just use "<ui:usertask ng-
controller="ApproveTaskCtr" ui-intl="task.Submission." formname="taskform" >"

ng-controller="uiActionsCustomController": Previously this element was
used in "<ui:actions capability="execute" ng-disabled="isNotValid()" ng-con-
troller="uiActionsCustomController">". From now on, you can just use- "<ui:actions cap-
ability="execute" ng-disabled="isNotValid()" >"

Data model changes

The following new elements have been added to the registers and tables in the data
model:

l WZP_CASE_ACTIVITY

l WZP_CASE_ACTIVITY_HISTORY

l WZP_SERVICE

l WZP_SERVICE_PARAMETER

l WZP_MAIL_NOTIFICATION

In this guide, the descriptions in the Database section was updated and the information is
now divided into descriptions of tables and registers.

For more information about the new database elements, see Database.

Case activity graphs available for workflows

You can now use case activity graphs to model workflows in WorkZone for standard work
processes as well as for ad-hoc tasks.

22

Developer Guide

Case activity graphs enable you to model tasks in responsive workflows and the flow of tasks
need not be known in advance. You can, for example, handle conditions such as these:

l The order of activities to be completed can vary.

l All possible activities need not be executed within each workflow.

l Activities must be repeated or disregarded depending on the outcome of other activ-
ities.

Integration

New integration features are now available. See Integration.

New form types

New form types have been introduced. Now the following form types are available:

Init Forms

Smarttasks forms

Edit forms

CaseActivity forms

For more information, see The forms concept.

23

WorkZone Process 2022.0

Architecture
From this section you can get an overview of the WorkZone Process architecture and a
basic understanding of the major components of the product.

Overview

WorkZone Process is a service within the WorkZone environment.

The service extends WorkZone with workflow capabilities by adding services for workflows
and forms that are used in WorkZone Process. On the client side, these services can be
used to interact with users.

WorkZone Overview

In the following overview, you can see the client and the server parts of the WorkZone envir-
onment. You can apply WorkZone Process forms and dialogs in the clients to, for example,
view lists or start processes.

24

Developer Guide

WorkZone Process components

The WorkZone Process overview below illustratest WorkZone Process components of an
agent server and a web server installation of WorkZone Process.

WorkZone Process is composed of a set of components. In the following overview the com-
ponents are grouped according to the installation method which can be either by an agent
server or by a web server.

Component Description

Process container Allows installation and configuration of all WorkZone Process com-
ponents.

Overview A single page application which allows viewing the status of all pro-
cesses, the status of their tasks, and performing actions on both.

25

WorkZone Process 2022.0

Component Description

Process menu Client-implemented context-sensitive menu option that is pop-
ulated with processes available in the current context. By calling
Process.svc//Definitions/{register}/{systemKey=null} the client gets
available process for this context.

Agent server installations

The agent server installs Windows Services. Windows Services manages WorkZone Pro-
cess related communication services.

Component Description

Mail agent Windows service that sends smart mails to actors.

Notification agent Windows service that sends push notifications.

MSMQ Receiving message queue that handles messages to the noti-
fication agent. For example, push notification messages for
WorkZone Task.

Web server installations

The web server installation requires Internet Information Services (IIS) such as rest service
end points. The ISS must be activated fromWindows NT. Also, a queue and a workflow
host are required components.

Component Description

Workflow.svc REST service for workflows serviced by the work-
flow host.

Package.svc REST service that handles package installation.
The service allows loading/deployment of a pack-

26

Developer Guide

Component Description

age to a server.

Process.svc Primary REST service for process, getting process
information, starting a process, getting process
forms, and doing process actions.

PushNotificationService.svc REST service for registering push notification
receivers.

Asset Service agent Service that synchronizes the Assets folder of IIS.
This ensures that package changes are loaded to
the Assets folder.

MSMQ Receiving message queue that handles mes-
sages to the notification agent. For example, push
notification messages for WorkZone Task.

OData Actions OData extensions that extend WorkZone Process
registers by adding actions to them. This allows
having one single interface for communication
with OData and the WorkZone Process Host.

Host architecture

27

WorkZone Process 2022.0

The Workflow Host

In a web server installation of WorkZone Process a web server host must be implemented
to facilitate creation and processing of and communication with workflows.

Implementation

The Host is a DLL which is built as an extension to WF4 Runtime which is part of the .NET
Framework 4.5. The WF4 Host creates instances of the workflows defined in the database
and the workflows are implemented as XAML. The workflow instances are executed by
runtime. The workflow host uses the webservice to communicate with the clients.

Persistence with timeouts

The WF4 Host has several classes of which two are going to be mentioned here:

l Persistence. Persistence saves the state of the workflow in the database, and
unpersists the workflow when the method ResumeBookmark is called through
the web service. For every workflow which is persisted, a timeout is set.

l TimeoutHandling unpersists workflows when they are set to expire, depend-
ing on the default duration defined for the workflow in Workflow Configuration
Management.

TheWCF Webservice

The workflow host is called when an end user starts and manages processes in the client.
Communication between the client and the workflow host is facilitated by a Windows Com-
munication Foundation (WCF) web service. If, for example, the type of workflow is §20,
then the workflow host looks for that particular workflow type in the database, and – when
found – starts a workflow instance.

The webservice is configured in IIS to start whenever IIS starts.

Activity library

ActivityLibrary is a collection of activities, that is, the building blocks of the work-
flows.

28

Developer Guide

Tracking Participants

TrackingParticipants is a class which:

l keeps track of what happens with the running workflows. This is recorded in the in
the database in the table workflowlog. You can access the workflow log in
WorkZone Configuration Management.

l writes to SJDebug which is a diagnostic tool to track and log activities.

Base

The base contains all the basic elements that are used by the host, ActivityLibrary and
TrackingParticipants. For example methods linking to SOM.

29

WorkZone Process 2022.0

WZP Process Package Devel-
opment

Configure packages 30

About plugins 39

Extend packages using plugins 42

Configure packages

In WorkZone Process, you can model processes in process packages. A process package
contains a process configuration and forms. You can use the WorkZone Process Package
Loader to deploy a package to development, test, and staging environments.

A simple package contains the following basic configuration elements:

l Package.xml - A package configuration file that contains the configuration of the
package forms and the processes.

l UI- A folder that contains the form view and controller. If you use it for further cus-
tomizations, this folder can also contain localization files, layout files, and icons
(seeForms) about form configuration.

l Init.htm

l The visual implementation of the Process start form.

l Init.js

l Validation logic and business rules for the Process start form.

l Task.htm

l The visual implementation of Smart Task.

l Task.js

l Validation logic and business rules for the Smart Task form.

l Workflows - Contains the package workflow (see Workflow process modelling for
information on workflow modeling).

l Workflows.xaml - The workflow configuration.

30

Developer Guide

The example below shows a simple package configuration file, which is configured with two
forms and one workflow.

Example

<?xml version="1.0" encoding="utf-8" ?>

<Package>

<Formularer>

<FormDefinition>

<FormGuid>{709f3330-9190-4cc9-a7d5-0b30edef0e6e}</FormGuid>

<Name>Init.Submission</Name>

<Default>J</Default>

<ContentType>TEXT/HTML</ContentType>

<ContentFile>ui\init.Submission.html</ContentFile>

<ControllerFile>ui\init.Submission.js</ControllerFile>

</FormDefinition>

<FormDefinition>

<FormGuid>{e31bed95-94f3-4c61-a37c-5460411621cd}</FormGuid>

<Name>Task.Submission.Approve</Name>

<Default>J</Default>

<ContentType>TEXT/HTML</ContentType>

<ContentFile>ui\task.Submission.Approve.html</ContentFile>

<ControllerFile>ui\task.Submission.Approve.js</ControllerFile>

</FormDefinition>

</Formularer>

<Workflows>

<WorkflowDefinition>

<Version>1.0.0.0</Version>

<XamlFile>Workflows\Submission.xaml</XamlFile>

<FormGuid>{709f3330-9190-4cc9-a7d5-0b30edef0e6e}</FormGuid>

<AccessCode>ALLEEMNER</AccessCode>

31

WorkZone Process 2022.0

<Standard>J</Standard>

<Processes>

<ProcessDefinition>

<ProcessGuid>{68D5E05E-C079-4A76-8CEB-B8EC44EDA56B}</Pro-
cessGuid>

<Type>MAIN</Type>

<Name culture="en-GB">Basis Submission</Name>

<Description>Basis process</Description>

<DisplayOrder>666</DisplayOrder>

<DurationUnit>D</DurationUnit>

<DefaultDuration>15</DefaultDuration>

<AccessCode>ALLEEMNER</AccessCode>

<Package>Scanjour.Process.Basis</Package>

</ProcessDefinition>

</Processes>

</WorkflowDefinition>

</Workflows>

</Package>

Form configuration

Each forms package must contain a FormDefinition node in the Forms section:

Basic form configuration

Example

<Forms>

<FormDefinition>

<FormGuid>{F3C3A448-F378-4AB9-8729-821941BBD9B0}</FormGuid>

<Name>Init.Submission</Name>

<Default>J</Default>

32

Developer Guide

<ContentType>TEXT/HTML</ContentType>

<ContentFile>ui\init.Submission.html</ContentFile>

<ControllerFile>ui\init.Submission.js</ControllerFile>

</FormDefinition>

Where:

l FormGuid is the unique identifier of the form.

l Name is the name of the form.

l Default is "J". Do not change the value.

l ContentType is the type of content, usually "TEXT/HTML".

l ContentFile is the path to the file (in the zipped package) that contains the visual
implementation of the form.

l ControllerFile is the path to the file that contains the logic of the form.

SmartTask form configuration

If it is a SmartTask form, the configuration must contain additional elements depending on
which controls are used.

If the SmartTask form contains controls with dynamic data, the form configuration must contain
a corresponding DataContextDifinition node.

Example

FormDefinition>

<FormGuid>{21685432-EC7F-45FF-BB11-D1D4A7A04D16}</FormGuid>

<Name>Task.Submission.Approve</Name>

<Default>J</Default>

<ContentType>TEXT/HTML</ContentType>

<ContentFile>ui\task.Submission.Approve.html</ContentFile>

<ControllerFile>ui\task.Submission.Approve.js</ControllerFile>

<Data>

<DataContextDefinition>

33

WorkZone Process 2022.0

<Name>ActiveActors</Name> <Query>WzpUser-
Tasks?$expand=NameKey&$select=InstanceId,NameKey_
Value,TaskState_
Value,NameKey/ID,NameKey/Summary,NameKey/NameType_
Value,NameKey/NameCode&$filter=InstanceId eq '{0}' and (TaskState_
Value eq 'OPEN' or TaskState_Value eq
'PENDING')&$orderby=TaskOrder</Query>

<MaxOfflinePages>10</MaxOfflinePages>

<Parameters>

<Parameter>InstanceId</Parameter>

</Parameters>

</DataContextDefinition>

</Data>

</FormDefinition>

Where:

l Name is the key of DataContext (specified for standard controls). If you add custom
controls, you need to add a DataContextDefinition that corresponds to it).

l Query is the OData query used for collecting dynamic data.

l MaxOfflinePages is the maximum number of OData pages that are sent as off-
line data.

l Parameters is a list of parameters used in the query (see examples in the Basis
package).

Standard DataContextDefinition controls

The table below lists DataContextDefinition standard controls:

34

Developer Guide

Con-
trol

DataC-
ontex-
tDefin-
ition
Name

Query and Parameters

wz-
p-
pro-
ces-
s-
log

ActionL-
og

<Query>WzpUser-

Tasks?$se-

lect-

t=NameCode/Summary,ProxyCode/Summary,ID,Importance_

Value,TaskSchedule_Value,Title,Comment,NameCode_

Value,NameOu_Value,ProxyCode_Value,ProxyOu_

Value,Closed,Opene-

d,Created,DueDate,NearDueDate,TaskAction_Sum-

mary,TaskState_Value,TaskAction_Value,TaskType_

Value&$-

expand=NameCode,ProxyCode&$filter=Show eq true

and InstanceId eq '

{0}'&$orderby=TaskOrder</Query>

Parameters>

<Parameter>InstanceId</Parameter>

</Parameters>

wzp-
:sm-
art-
tas-
k-
deta-
ils-
sec-
tion

MainP-
hases

<Query>WzpUserTasks?$filter=TaskId eq '

{0}'&$expand=Phases,Root/Process,Root/File,Root-

,In-

stance&$se-

lect-

=Instance/RowId,I-

nstance/Created,RootId,Phases/Closed,Phases/DueDat-

e,Phases/Name_

Sum-

mary,Phases/Number,Phases/Opened,Phases/Schedule_

Value,Phases/State_

Value,Root/Pro-

cess/Name,Root/File/FileNo,Root/File/Title,Root/Due-

35

WorkZone Process 2022.0

Con-
trol

DataC-
ontex-
tDefin-
ition
Name

Query and Parameters

Date,Created</Query>

<Parameters>

<Parameter>TaskId</Parameter>

</Parameters>

wzp-
:ans-
wer-
s-
an-
d-
com-
men-
t

Answer-
Docu-
ments

Query>Records?$select=ID,Summary,DocumentType_

Value,State_Value,Ex-

tension&$orderby=Mru/Favorite,Mru/Updated

desc,Updated desc&$filter=FileKey_Value eq '

{0}' and State_Value ne 'UP' and ExternalDocId ne

''</Query>

<Parameters>

<Parameter>RegisterKey</Parameter>

</Parameters>

SharedDataContextDefinition

You can also create data context, which is shared by SmartTasks forms in a package.

Example

<Forms>

<FormSharedData>

<SharedDataContextDefinition>

<Name>ActionLog</Name>

<Query>WzpUser-
Tasks?$select=NameCode/Summary,ProxyCode/Summary,ID,Importance_
Value,TaskSchedule_Value,Title,Comment,NameCode_Value,NameOu_
Value,ProxyCode_Value,ProxyOu_Value,Closed,Opene-
d,Created,DueDate,NearDueDate,TaskAction_Summary,TaskState_

36

Developer Guide

Value,TaskAction_Value,TaskType_Value&$-
expand=NameCode,ProxyCode&$filter=Show eq true and InstanceId eq '
{0}'&$orderby=TaskOrder</Query>

<MaxOfflinePages>3</MaxOfflinePages>

<Parameters>

<Parameter>InstanceId</Parameter>

</Parameters>

</SharedDataContextDefinition>

And then this shared data context can be used in any SmartTask definition in this package by
the Name key.

Example

<FormDefinition>

<FormGuid>{B67DC731-9F6D-4A61-84F5-DEE028122D42}</FormGuid>

<Name>Task.Submission.Rejected</Name>

<Default>J</Default>

<ContentType>TEXT/HTML</ContentType>

<ContentFile>ui\task.Submission.Rejected.html</ContentFile>

<ControllerFile>ui\task.Submission.Rejected.js</ControllerFile>

<Data>

<DataContextDefinition>

<SharedName>ActionLog</SharedName>

</DataContextDefinition>

</Data>

</FormDefinition>

Details Section control

The SmartTask form contains a details section control. This section controls information about
the SmartTask, online Help link, Print and Pdf buttons as well as the description.

37

WorkZone Process 2022.0

Example

<form autocomplete="off" name="taskform" class="wzp-user-

task-form" ng-cloak>

<div class="wzp-task-page">

<wzp:smart-task-details-section

source="context.context"

title-label="TITLE"

title-label-group="TASKHEARINGSUMMARY"

help-link="Default.htm#Basis_package/Hearing_sum-
mary.ht-
m%3FTocPath%3DWorkZone%2520Pro-
cess%2520Bas-
is%2520Package%7CBasis%2520hearing%2520processes%7C_____6">

</wzp:smart-task-details-section>

If the SmartTask is part of a phase process, it also contains a phase bar and phase process
information.

By default, the details information is shown in collapsed mode but it can be expanded to
see more information.

38

Developer Guide

This control requires the DataContextDefinitions “ActionLog” in the package.xml file,
either directly or by SharedDataContextDefinition.

The query for this DataContextDefiinition is:

<Query>WzpUser-

Tasks?$se-

lect=NameCode/Summary,ProxyCode/Summary,ID,Importance_

Value,TaskSchedule_Value,Title,Comment,NameCode_Value,NameOu_

Value,ProxyCode_Value,ProxyOu_Value,Closed,Opene-

d,Created,DueDate,NearDueDate,TaskAction_Summary,TaskState_

Value,TaskAction_Value,TaskType_Value&$-

expand=NameCode,ProxyCode&$filter=Show eq true and

InstanceId eq '{0}'&$orderby=TaskOrder</Query>

<Parameters>

<Parameter>InstanceId</Parameter>

</Parameters>

About plugins

It is possible to tune the behavior of certain processes using activities with support for plugins.
In this release, the only process using plugins is the ExternalCommunication package with
the SmartPost process.

The SimpleMergeDocumentsToPdf activity tests for the availability of a function with the
signature:

/// <summary>

/// Update the record.

39

WorkZone Process 2022.0

/// </summary>

/// <param name="updateRecord">The Pdf record to update</param>

/// <param name="inputRecords">The records used when merging the

Pdf record.</param>

/// <returns></returns>

bool UpdateRecord(string updateRecord, List<String> inputRe-

cords);

Currently, this is the only activity that uses functions in a plugin but in the future other activ-
ities may support other functions that must also be defined in the plugin.

To create a plugin, you must create a C# class library project and define the interface. For
example:

using System;

using System.Collections.Generic;

namespace WorkZone.<package>.Plugin

{

/// <summary>

/// Plugin to do updated to recently merged Pdf records.

/// </summary>

public interface IPostPdfMerge

{

/// <summary>

/// Update the record.

/// </summary>

/// <param name="updateRecord">The Pdf record to

update</param>

/// <param name="inputRecords">The records used when mer-

ging the Pdf record.</param>

/// <returns></returns>

bool UpdateRecord(string updateRecord, List<String>

inputRecords);

}

}

40

Developer Guide

The interface name is defined in the package where the process is defined. The class library
assembly name is defined in the extension package.

The implementation must implement a constructor with the signature shown below and the
function defined in the interface:

using System;

using System.Collections.Generic;

using System.Net;

namespace WorkZone.<package>.Plugin

{

/// <summary>

/// Implements Plugin for SimpleMergeDocumentsToPdf.

/// </summary>

public class PostPdfMerge : PluginBase, IPostPdfMerge

{

/// <summary>

/// Constructor

/// </summary>

/// <param name="oDataUri">The oData Uri.</param>

/// <param name="credentials">The credentials used for

oData.</param>

public PostPdfMerge(Uri oDataUri, ICredentials cre-

dentials) : base(oDataUri, credentials)

{

}

/// <summary>

/// Update newly created Pdf document with additional

metadata.

/// </summary>

/// <param name="updateRecord">The newly generated PDF doc-

ument</param>

/// <param name="inputRecords">The documents contained in

the PDF</param>

/// <returns>true if the update succeds.</returns>

public bool UpdateRecord(string updateRecord, List<string>

41

WorkZone Process 2022.0

inputRecords)

{

}

}

}

The base interface exposes two methods, which allows the function to get an OData client
context and a simple OData client.

ODataService GetOdataContext();

SimpleODataClient GetSimpleODataClient();

If the plugin needs to update custom properties that are not known to the OData context the
SimpleODataCLient must be used.

Extend packages using plugins

With the introduction of plugins to certain activities, you will need to update an already
installed package with an extension package. You define a plugin using a node in the
WorkflowDefinition section that specifies the name of the assembly and the name of
the interface:

<PluginAssembly>Assemblyname.dll</PluginAssembly> <Plu-

ginInterface>IUpdateMetaData</PluginInterface>

The Package Loader supports that you can extend existing packages by installing a pack-
age extension.

The package must include a new node named Extension in the XML definition. The
Extension node specifies which package that the extension affects:

<PackageDefinition>

<Name>CommunicationExtension</Name>

<Extension>ExternalCommunication</Extension>

<Version>19.1.1.0</Version>

<Description>Package contains ExternalCommunication exten-

sions.</Description>

</PackageDefinition>

42

Developer Guide

When the Extension node is met, the specified version of the package is matched against
the version specified. The two versions must identical for the extension package to load.

The package.xml may contain sections to add or modify the following sections:

l <Assemblies>

l <Assets>

l <Forms>

The <Workflows> section only allows a small part of a WorkflowflowDefinition to be mod-
ified. The XAML part of the workflow cannot be modified so in order to identify a workflow, a
new node named TypeName is specified, which together with the Version identifies the
workflow. Also, it is possible to specify which dll contains the plugin. (The assembly must be
added in the <Assemblies> section in order for the workflow to find it).

<WorkflowDefinition>

<Version>19.1.1.0</Version>

<TypeName>WorkZone.Ex-

ternalCommunication.SendSmartPost</TypeName>

<PluginAssembly>WorkZone.FSMI.Plugin.dll</PluginAssembly>

In the <Processes> section <ProcessDefinition>, the following nodes can be mod-
ified:

l Name

l Description

l DisplayOrder

l DurationUnit

l DefaultDuration

l NearDuration

l AccessCode

l Access

The ProcessGuid is mandatory and must match the value of the original package.

Most important – it is possible to define more process parameters in the <Parameters> section.

<ProcessDefinition>

<ProcessGuid>{23B9498E-BCA5-4746-98A0-

43

WorkZone Process 2022.0

71E03CD6963C}</ProcessGuid>

<Parameters>

<!—specify new parameters -->

</Parameters>

</ProcessDefinition>

44

Developer Guide

Process designer
Configure phase processes 45

Configure sub processes 57

Configure phase processes

The phase process

The phase process is a way to get an overview of processes, which consists of several steps,
and indicate where in the steps a certain business process is. A phase process has one act-
ive phase and uses actions (bookmarks) to select the active phase.

Building a phase process

To assist in building phase processes as a XAML workflow a number of activities is available
in the toolbox:

PhaseProcess activity

The main container for a phase process. This is a placeholder for the PhaseContainer activity
and it has a number of predefined variables which are used by the PhaseContainer to man-
age phases.

PhaseContainer activity

The PhaseContainer is responsible for creating phases in the database and to respond to
actions (bookmarks) supported by the phase activity. The Phase container has a visual inter-
face that allows Phase activities to be dropped in the container.

Below is a snapshot of the PhaseContainer and the predefined variables in the PhasePro-
cess after the PhaseProcess has been dropped in the design surface in Visual Studio.

45

WorkZone Process 2022.0

Edit workflow properties

Click the Properties button in the Phase container form, you can edit workflow properties
such as Display name.[DRAFT]

Phase activity

The Phase activity is a composite activity that supports deadlines and can execute activ-
ities when actions (bookmarks) happens.

Activity placeholders are available for the following actions:

Start The activities are executed when the phase becomes active at start or from a
previous phase.

Restart The activities are executed when the phase becomes active from a sub-
sequent phase.

NearDue The activities are executed when a deadline is about to happen.

Due The activities are executed when a deadline is about to happen.

Exit The activities are executed when the phase is left.

Note: The above activities allow the Phase process to inform about an event.
However, the phase process is about to change so the activities are executed in a
NoPersistZone. This ensures that the phase transition will not be delayed because
the workflow is persisted.

46

Developer Guide

Below is a snapshot after a phase has been dropped into the PhaseContainer activity:

In the current version of the designer, a number of properties of the Phase activity must be
bound manually to the variables in the PhaseContainer:

Action Informs the Phase activity what action is to be executed.

NextPhaseNo Informs about the next active phase. You can jump back and forward
between phases.

Response Informs the phase container about the action (bookmark) that the phase has
just executed.

PhaseNumber The number of the phase. Must reflect the order of the phase in the designer.
First phase is number 0 (zero).

DisplayName The Phase title used in the designer. The title is not used for the Outlook over-
view. See Defining the process in the package.xml file.

DueDate If the phase has a fixed deadline the DueDate can be specified. Normally the
DueDate is bound to an InArgument of the workflow to allow the deadline to
be specified when the process is started.

Duration If the phase has a fixed duration the Duration can be specified. If a DueDate
is also specified it takes precedence over the Duration.

47

WorkZone Process 2022.0

The Properties EnableDemoteAction and EnablePromoteAction are maintained by the
PhaseContainer activity and prevents a demote action to be allowed in the first phase.

Below is a snapshot of the properties of phase 0 after the variables have been inserted.

The phase activity supports the following events:

CREATE: Creates information about the phase in the database.

PROMOTE: The phase is becoming active as result of a PROMOTE action.

DEMOTE: The phase is becoming active as result of a DEMOTE action.

UPDATE: The phase is updated (new deadline etc.)

CANCEL: The process is canceled.

Note: If the ExitOnDeadline property is set to True the icon for the process in the
Outlook overview will indicate that the process was canceled. If it is set to False the
icon will NOT indicate that the process was canceled.

48

Developer Guide

The Phase Activity uses the following activities, which are visible in the toolbox but are
assumed to work inside a Phase activity:

SimplePhase activity

The activity is responsible for creation of the phase in the database and defining the book-
marks needed to support allowed actions on the phase.

UpdatePhase action

Updates the phase action in the database after timer events has occurred in the Phase activ-
ity.

UpdatePhase state

Updates the Phase state after an event (bookmark) has occurred in the Phase activity.

Schedule activity

Used to calculate the next Phase deadline based in the DueDate and Duration properties.

IsStringNullOrWhiteSpace

Use to control the flow inside the Phase activity.

Configuring the activity placeholders

When the phase process has been designed with the correct number of phases, the activity
placeholders can be populated with activities.

A number of activities are available:

CreateProcess

The activity can start a process from this package or from the Basis or Extended package.

SimpleUserTask

This activity can be used to notify someone via a mail about the event which happened. It’s
important that the IsNotification property is set to true, so no bookmarks are defined.

Sequence

Adding a Sequence activity allow you to build actions from the activities available in the tool-
box. Note, though, that the activites are executed in a NoPersistZone so you cannot use activ-
ities which relies on bookmarks during the execution.

49

WorkZone Process 2022.0

In the snapshot below the CreateProcess has been added to the start event of the first
phase to start a distribution process from the Extended package.

When the StartProcess activity is added the properties must be specified in the Properties:
window. It is important to specify all mandatory arguments of the process in the Arguments
property as a Dictionary.

You may use fixed values or you may use arguments from the phase process in the dic-
tionary.

Below is a snapshot of the properties for the Distribution process.

Defining the process in the package.xml file

Currently the designer does not support properties (Title, DueDate and Duration) so these
properties must be set on the Properties pane in visual studio.

50

Developer Guide

A number of other characteristics of the process needs to be defined in the process package
under the WorkflowDefinition section. Some of the sections below is also described in the
Workzone Process Package Development.

The section contains the following:

Version The Workflow version. Allows breaking changes to be introduced to
the workflow by changing the major or the minor version number.

XamlFile The name of the XAML file containing the workflow.

FormGuid The Guid of the corresponding Init form used to start the workflow. The
Init form is defined in the Forms section of the Package.xml file.

EditFormGuid The Guid of the corresponding Init form used to start the workflow. The
Init form is defined in the Forms section of the Package.xml file.

AccessCode An access code which may restrict which departments or users who
can use the process.

Context The context in which the process can be started. See the Context
description below.

PhaseLabels The localized Phase names used in the Outlook overview. Must con-
tain the installed cultures in Workzone Content Server, but may contain
more.

ActionLabels The supported Actions (bookmarks). The Actions are defined by the
Phase activity and ,ay be copied from any Phase process.

Both PhaseLabels And ActionLabels are inserted as domains in the Custom_Domain
register. The type is autogenerated WZP<wf_id>P and WZP<wf_id>A where <wf_id> is the
workflow id in the wzp_workflow register.

Below is a sample of the WorkflowDefinition section of the package.xml file.

<WorkflowDefinition>

<Version>4.3.0.0</Version>

<XamlFile>Workflows\Ministerial.FivePhase.xaml</XamlFile>

<FormGuid>{A147CAE0-4B6C-4576-B7C9-1F25CFEBB18B}</FormGuid>

<EditFormGuid>{01C88CD3-3D36-4BE8-B6BB-8F2135603BEC}</EditFormGuid>

<AccessCode></AccessCode>

51

WorkZone Process 2022.0

<Standard>J</Standard>

<Context>

<Register>FILE</Register>

<EntityFilter>Closed eq null and not(Instances/any(p: p/Process/ProcessGuid eq
'992f5bb4-9048-4048-ac0b-cbb14f2b9241' and (p/WorkflowStatus eq 'Persisted'
or p/WorkflowStatus eq 'Running'))) </EntityFilter>

<TagFilter></TagFilter>

</Context>

<PhaseLabels>

<Phase number="1">

<Label culture="en-GB">Distribution</Label>

<Label culture="da-DK">Fordeling</Label>

</Phase>

<Phase number="2">

<Label culture="en-GB">Processing</Label>

<Label culture="da-DK">Behandling</Label>

</Phase>

<Phase number="3">

<Label culture="en-GB">Approval</Label>

<Label culture="da-DK">Godkendelse</Label>

</Phase>

<Phase number="4">

<Label culture="en-GB">Delivery</Label>

<Label culture="da-DK">Aflevering</Label>

</Phase>

</PhaseLabels>

<ActionLabels>

<Action name="CANCEL">

<Label culture="en-GB">Cancelled</Label>

52

Developer Guide

<Label culture="da-DK">Afbrudt</Label>

</Action>

<Action name="CLOSE">

<Label culture="en-GB">Phase process ended</Label>

<Label culture="da-DK">Fase proces afsluttet</Label>

</Action>

<Action name="DEMOTE">

<Label culture="en-GB">Move to previous phase</Label>

<Label culture="da-DK">Ryk til forrige fase</Label>

</Action>

<Action name="INIT">

<Label culture="en-GB">Startet</Label>

<Label culture="da-DK">Påbegyndt</Label>

</Action>

<Action name="NEARDUE">

<Label culture="en-GB">Reminder date reached</Label>

<Label culture="da-DK">Påmindelsesdato nået</Label>

</Action>

<Action name="PROMOTE">

<Label culture="en-GB">Move to next phase</Label>

<Label culture="da-DK">Ryk til næste fase</Label>

</Action>

<Action name="UPDATE">

<Label culture="en-GB">Due date changed</Label>

<Label culture="da-DK">Tidsfrist ændret</Label>

</Action>

<Action name="OVERDUE">

<Label culture="en-GB">Schedule overdue</Label>

<Label culture="da-DK">Tidsfrist overskredet</Label>

53

WorkZone Process 2022.0

</Action>

</ActionLabels>

The context section

The context section of the WorkflowDefinition specifies the conditions that enable the pro-
cess can be started. It specifies on which entity the process can by started (FILE or
RECORD) and an additional filter in form of an OData query.

In the example above, the Distribution process can be started on a case which is not
closed and which has no other distribution processes running.

The Tag filter is currently not used.

Deadline principles

Deadline rules

In WorkZone Processyou can configure phase process using various deadline rules. The
deadline rules control if a phase is within the deadline, close to the deadline (near due) or
if the deadline has passed (overdue).

You can also configure deadline based events. See Phase events.

You can see the state of the phase process indicated by colored icons in the WorkZone
Process process overview:

l Green: Within deadline.

l Yellow: Near due.

l Red: Overdue.

Deadlines are calculated based on various units which are defined on the process itself.

The following units are available:

Unit Description

Days Based on a 7 day week.

Work days Based on a 5 day week.

Søgnedage Danish term for work days minus public holidays as defined by the Danish

54

Developer Guide

Parliament.

Hours Based on hours. You can configure a phases of a phase process using vari-

ous rules by setting the Duration parameter on a phase.

Phase without duration and dead-

line

Duration is set to empty. The deadlines of the phase are dependent of the

surrounding phases.

Phase with fixed duration Duration is set to a fixed value, for example10 for 10 of the calculation

model units.

Phase with relative duration Duration is set to a relative value (percentage), for example50%.

Phase deadline on specific date The phase deadline is set by the user or by a defined rule.

Relative phase deadline from pro-

cess start
Duration is set to for example+2, meaning two units from the start of the

phase process.

Relative phase deadline from pro-

cess deadline
Duration is set to for example-2, meaning two days from the phase pro-

cess deadline.

You must assign a deadline to the phase process.

See examples of phase processes configured with deadline rules below.

No deadline

Deadline defined

Fixed duration

55

WorkZone Process 2022.0

Phases distributed by percent

Phases distributed relative to start time and deadline

Phase events

Every phase has multiple possible events. You can configure a phase to activate one or
more processes.

In the event properties, configure the event by dragging one or more processes to the
event.

56

Developer Guide

Phase Event is triggered by:

Start Promoting to the phase.

Exit Promoting from the phase.

Restart Demoting to the phase.

Near due The phase has reached near due.

Due The phase is overdue (the deadline has passed).

Configure sub processes

Workflow process modelling

You can model workflows using the WorkZone Process Designer. This tool is a standard pro-
cess modeling tool consisting of a toolbox with activities and flow control elements and a can-
vas for process modeling.

57

WorkZone Process 2022.0

Create a new process

1. Click New proces in the toolbox ribbon.

2. Drag activities and flow control elements from the toolbox ribbon to the process
canvas.

3. Connect the elements using arrows. Arrows define the flow of the process.

4. Click on an activity to configure its properties.

5. Save the modeled process as XML.

6. Pack modeled processes together with their forms as a complete process pack-
age (for more information on packages, see Configure packages).

Standard activities

The WorkZone ProcessDesigner has a variety of standard activities that you can use for
modeling processes. The activity package contains, among others, the activities listed
below. For the full list, refer to the API documentation .

58

Developer Guide

Note: This list is dynamic and will be updated. You can make a request for additional
generic activities to the product team.

Icon Activity Element Description

User task User tasks Initiates a smart task for user interaction.

User tasks
(Parallel)

User tasks A series of parallel smart tasks with interaction from mul-
tiple users at the same time. Typically used for processes of
the type Hearing.

User tasks
(Sequential)

User tasks Sequentially ordered smart tasks with user interaction. Typ-
ically used for processes of the types Distribution and
Approval.

TaskInfo User tasks Writes a log entry which is visible in the Processes over-
view. Used for writing states for end users. E.g. used in
Smart Post to constantly update delivery status in the over-
view.

Create PDF Document PDF activity which can merge multiple documents into one
PDF, adding bookmarks and watermark to the final PDF.
(Currently used only in Smart Post. Will be made available
in the standard product).

Merge doc-
ument

Document Document activity merging context relevant fields into a
DOCX document. Compatible with merge fields in
WorkZone for Office. (Currently used only in Smart Post.
Will be made available in the standard product).

Load
Register
Object

Data Loads a WorkZone entity to be used in the process.

Update
Register
Object

Data Updates a workzone entity.

Insert Data Creates a WorkZone entity.

59

WorkZone Process 2022.0

Register
Object

Start process Process Starts a new process.

Create Pro-
cess History

Sub Pro-
cesses

Creates a history document on the case. The document will
contain meta data on the process execution.

Send to
Smart Post

Smart Post Sends to Smart Post which routes Digital Post messages to
eBoks or Straalfors Connect. (Requires an extra license for
Smart Post).

Example: Configuration of properties on a user task.

60

Developer Guide

Workflow development
Activities 61

Testing workflows 62

Document flow 72

Activities

Building custom activities

Code Activities

If new activities are needed these may be developed as code activities based on the activity
classes provided in Windows Workflow Foundation.

Normally, activities are subclassed from CodeActivity or CodeActivity<T>. Both activ-
ites do the main work in an overridden function:

protected override void Execute(CodeActivityContext context)

If the activity needs to access information from the WorkZone Process datamodel it is done
through calls to the OData service provided by WorkZone Content Server 2014.

The WorkZone Process Workflow Host exposes OData through a Work-
flowHostExtension which makes the job easier for the activity developer.

To get an ODataService, use the following code:

ODataService ctx = context.GetExtension<WorkflowHostExtension>

().ODataContext();

The ODataService is per default impersonated to the calling user. If, for some reason, you
want to access registers and avoid the normal access code protection, you can get an
ODataService which is not impersonated but runs as the user which is used by the workflow
host:

ODataService ctx = context.GetExtension<WorkflowHostExtension>

().ODataContext(false);

61

WorkZone Process 2022.0

Phase activities

In WorkZone Process 2014 R2 HF01 you have the following options for configuring phase
activities.

Configuring phase names in multiple languages

Configuring Phase Start Time and End Time logic

l Duration in Days

l Relative Deadlines

Configuring phase events

You can configure phase events on:

l Start

l Exit

l Restart

l Near Due

l Due

Configuring several sub processes for each event. The events will be executed in
sequence of configuration.

Testing workflows

Mention ETW Tracking for testing

Test Description

Host Test

Activity Test

Test Utils

62

Developer Guide

Workflow activity logging

Tracking participants

The Workflow Host is equipped with three different tracking participants which log activities in
different places.

l WorkflowLogTrackingParticipant logs entries in wzp_workflow_log.

l EWTTrackingParticipant logs events which can be monitored in the event
viewer, if it is enabled.

l SjDebugTrackingParticipant logs entries in sjDebug.

The tracking participant can be enabled/disabled in the web config file in the Scan-
jour.Workflow4.Host.Settings section. Only the first tracking participant is enabled
by default. The two other participants are for troubleshooting.

<Scanjour.Workflow4.Host.Settings>

<setting name="EnableSjDebugTrackingParticipant" seri-

alizeAs="String">

<value>False</value>

</setting>

<setting name="EnableLogTrackingParticipant" seri-

alizeAs="String">

<value>True</value>

</setting>

<setting name="EnableEtwTrackingParticipant" seri-

alizeAs="String">

<value>False</value>

</setting>

</Scanjour.Workflow4.Host.Settings>

Tracking can be disabled for individual workflows for various reasons (for example, workflows
never causing any problems or very "noisy" workflow). This is done in the same section of the

63

WorkZone Process 2022.0

web.config file. In the example below, all logging of workflows whose typename begins
with TestPackage. and Test has been disabled.

<Scanjour.Workflow4.Host.Settings>

<setting name="DisableLoggingInWorkflows" serializeAs="Xml">

<value>

<ArrayOfString xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<string>TestPackage.</string>

<string>Test.</string>

</ArrayOfString>

</value>

</setting>

</Scanjour.Workflow4.Host.Settings>

To prevent the wzp_workflow_log from growing infinitely, an oracle batch job is
installed that will delete log entries for completed workflows after 3 days – only leaving ter-
minated and faulted workflows in the table. By default, everything possible is being logged.
However, you can tune the logging on package level and on workflow level by defining a
tracking profile to the package in the PackageDefinition section or the Work-
flowdefinitionsection.

The tracking profile is an XML description which defines what must be logged:

<PackageDefinition>

<Name>Basis</Name>

<Version>3.1.0.0</Version>

<Description>Basic submission</Description>

<TrackingProfile>Workflows\Basic.xml</TrackingProfile>

</PackageDefinition>

<WorkflowDefinition>

<Version>3.1.0.0</Version>

<XamlFile>Workflows\Submission.xaml</XamlFile>

64

Developer Guide

<FormGuid>{709f3330-9190-4cc9-a7d5-0b30edef0e6e}</FormGuid>

<AccessCode></AccessCode>

<Standard>J</Standard>

<TrackingProfile>Workflows\Sparse.xml</TrackingProfile>

<WorkflowDefinition>

Tracking Profiles

A tracking profile controls the 7 different tracking records which are supported:

WorkflowInstanceRecords

Reports changes in the workflow instance state, for example: Started, Idle, Unloaded,
Resumed.

ActivityScheduledRecords

Reports about every activity being scheduled for execution in the workflow. You may need to
limit the reporting of scheduled activities because complex workflows may produce a lot of
entries.

ActivityStateRecords

Reports the state of an executing activity, including the arguments and variables value in the
activity. These records may be very useful for understanding what is going on in a workflow.
However, you may need to limit which activities report ActivityStateRecords.

BookmarkResumptionRecords

Reports the bookmarks resumed on the workflow. These are important to understand when
and why a workflow is resumed.

CancelRequestedRecords

Informs about activities being canceled, for example, a delay activity being canceled.

65

WorkZone Process 2022.0

FaultPropagationQueries

Reports about unexpected errors in activities and the call stack in the workflow. This is
important when you investigate the nature of an error.

CustomTrackingRecords

Reports information the developer of the activities has deemed important in order to under-
stand what the activity is doing and why. This is always the result of a careful consideration
from the developer of the activity. The following tracking profile is a tracing profile that
tracks everything in a workflow. The * indicates that everything must be tracked.

<?xml version="1.0" encoding="utf-8"?>

<tracking>

<profiles>

<trackingProfile name="Basic">

<workflow activityDefinitionId="*">

<workflowInstanceQueries>

<workflowInstanceQuery>

<states>

<state name="*"/>

</states>

</workflowInstanceQuery>

</workflowInstanceQueries>

<activityScheduledQueries>

<activityScheduledQuery activityName="*" childActiv-

ityName="*" />

</activityScheduledQueries>

<activityStateQueries>

<activityStateQuery activityName="*">

<states>

<state name="*"/>

66

Developer Guide

</states>

<arguments>

<argument name="*"/>

</arguments>

<variables>

<variable name="*"/>

</variables>

</activityStateQuery>

</activityStateQueries>

<bookmarkResumptionQueries>

<bookmarkResumptionQuery name="*" />

</bookmarkResumptionQueries>

<cancelRequestedQueries>

<cancelRequestedQuery activityName="*" childActivityName="*"

/>

</cancelRequestedQueries>

<faultPropagationQueries>

<faultPropagationQuery faultSourceActivityName="*" faultHand-

lerActivityName="*" />

</faultPropagationQueries>

<customTrackingQueries>

<customTrackingQuery name="*" activityName="*" />

</customTrackingQueries>

</workflow>

</trackingProfile>

</profiles>

</tracking>

67

WorkZone Process 2022.0

Below is a sample tracking profile which only tracks certain activities in a submission work-
flow, which disables all ActivitySchedulesRecords and limits the activities reporting
ActivitStateRecords.

<?xml version="1.0" encoding="utf-8"?>

<tracking>

<profiles>

<trackingProfile name="Basic">

<workflow activityDefinitionId="*">

<workflowInstanceQueries>

<workflowInstanceQuery>

<states>

<state name="Started"/>

<state name="Unloaded"/>

<state name="Resumed"/>

<state name="Completed"/>

<state name="Faulted"/>

</states>

</workflowInstanceQuery>

</workflowInstanceQueries>

<activityScheduledQueries>

</activityScheduledQueries>

<activityStateQueries>

<activityStateQuery activityName="SequentialUserTask">

<states>

<state name="Executing"/>

</states>

<arguments>

<argument name="*"/>

</arguments>

68

Developer Guide

<variables>

<variable name="*"/>

</variables>

</activityStateQuery>

<activityStateQuery activityName="ParallelUserTask">

<states>

<state name="Executing"/>

</states>

<arguments>

<argument name="*"/>

</arguments>

<variables>

<variable name="*"/>

</variables>

</activityStateQuery>

<activityStateQuery activityName="UserTask">

<states>

<state name="Executing"/>

</states>

<arguments>

<argument name="*"/>

</arguments>

<variables>

<variable name="*"/>

</variables>

</activityStateQuery>

<activityStateQuery activityName="SimpleUserTask">

<states>

<state name="Executing"/>

69

WorkZone Process 2022.0

</states>

<arguments>

<argument name="*"/>

</arguments>

<variables>

<variable name="*"/>

</variables>

</activityStateQuery>

<activityStateQuery activityName="UserTaskTimerActivity">

<states>

<state name="Executing"/>

</states>

<arguments>

<argument name="*"/>

</arguments>

<variables>

<variable name="*"/>

</variables>

</activityStateQuery>

<activityStateQuery activityName="ValidateUserTaskActivity">

<states>

<state name="Executing"/>

</states>

<arguments>

<argument name="*"/>

</arguments>

<variables>

<variable name="*"/>

</variables>

70

Developer Guide

</activityStateQuery>

</activityStateQueries>

<bookmarkResumptionQueries>

<bookmarkResumptionQuery name="*" />

</bookmarkResumptionQueries>

<cancelRequestedQueries>

</cancelRequestedQueries>

<faultPropagationQueries>

<faultPropagationQuery faultSourceActivityName="*" faultHand-

lerActivityName="*" />

</faultPropagationQueries>

<customTrackingQueries>

<customTrackingQuery name="*" activityName="*" />

</customTrackingQueries>

</workflow>

</trackingProfile>

</profiles>

</tracking>

Defining a tracking profile suiting a specific workflow requires knowledge about what the work-
flow does and where interesting information about the execution is located. The syntax is
easy to learn, and it is described both in books and on the internet. A lecture on how to specify
the various queries is not in the scope of this description. More information is available at
http://msdn.microsoft.com/en-us/library/ee513989(v=vs.110).aspx.

Other tracking records

A number of other tracking records appear in the log, and they cannot be controlled from a
tracking profile. The reason is that the records inform about events which must not be hidden
from the responsible person.

71

http://msdn.microsoft.com/en-us/library/ee513989(v=vs.110).aspx

WorkZone Process 2022.0

HostTrackingrecords

Informs about workflows that have been terminated by a user, or which end because of
errors inside the workflow.

WorkflowInstanceTerminateRecords

Informs about the reason why a workflow is terminated.

WorkflowInstanceUnhandledexceptionRecord

Informs about unhandled exceptions in the workflow.

Document flow

Documents participating in a process, for example, a hearing or a submission, are selected
in the InitForm in the document control:

72

Developer Guide

When the InitForm starts the process, the documents are handed to the process in the form of
a Record[] of type Scanjour.Process.Client.Lite.Record[] in an InArgument
called Documents:

The workflow passes these arguments to the ParallelUserTask or Sequen-
tialUserTask activities in the activity properties.

The most important properties are Attachments and Properties:

l Attachments

Indicates which documents should be attached to the mail. The Attachments prop-
erty is a string[] which stores the names of the properties where the doc-
uments are listed.

In the simple case where there are only documents in one property, the Attach-
ments property is hardcoded with New String() {“Documents”} (VB syn-

tax).

l Properties

Holds the Record[] in a dictionary that the user task converts to a User-
TaskPropertyCollection. The Properties property is a dictionary with one
entry, which is the documents array: New Dictionary(Of String,

Object) From {“Documents”, Documents}.

73

WorkZone Process 2022.0

When using this way of specifying the documents, you will also be able to create more
sophisticated processes that have more document controls in the InitForm.

If you have documents and references where you want to attach only the documents to the
mail, the references would still be the documents, but the Properties would be: New Dic-

tionary(Of String, Object) From {{“Documents”, Documents},

{“References”, References}}.

When a user task is created in the database table wzp_user_task, the properties are
stored together with the user task. The user task goes through all properties defined in the

74

Developer Guide

properties collection and completes the information in the record structure. It furthermore adds
other properties that are needed when the user task is shown in Outlook. The database con-
tains the following properties:

{

"Documents":

{"key":"Docu-

ments","type":"Scanjour.OData.Client.Lite.WorkZone.Record[]",

“value":[{"TypeName":"Som.Re-

cord","MediaResource":null,"ID":"6",

"Actions":[],

"Properties":[

{"key":"ID","type":"System.String","value":"6"},

{"key":"FileKey_Value","type":"System.String","value":"81"},

{"key":"State_Value","type":"System.String","value":"UÅ"},

{"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

{"key":"DocumentType_Value","-

type":"System.String","value":"Word.Document.12"},

{"key":"Title","type":"System.String","value":"WordDokument"},

{"key":"Summary","type":"System.String","value":"D-6, WordDok-

ument, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]},

{"TypeName":"Som.Record","MediaResource":null,"ID":"7",

"Actions":[],

"Properties":[

{"key":"ID","type":"System.String","value":"7"},

{"key":"FileKey_Value","type":"System.String","value":"81"},

{"key":"State_Value","type":"System.String","value":"UÅ"},

75

WorkZone Process 2022.0

{"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

{"key":"DocumentType_Value","-

type":"System.String","value":"Excel.Sheet.12"},

{"key":"Title","-

type":"System.String","value":"ExcelSpreadSheet"},

{"key":"Summary","type":"System.String","value":"D-7, ExcelS-

preadSheet, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]},

{"TypeName":"Som.Record","MediaResource":null,"ID":"8",

"Actions":[],

"Properties":[

{"key":"ID","type":"System.String","value":"8"},

{"key":"FileKey_Value","type":"System.String","value":"81"},

{"key":"State_Value","type":"System.String","value":"UÅ"},

{"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

{"key":"DocumentType_Value","-

type":"System.String","value":"PowerPoint.Show.12"},

{"key":"Title","-

type":"System.String","value":"PowerpointPresentation"},

{"key":"Summary","type":"System.String","value":"D-8, Power-

point, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]},

{"TypeName":"Som.Record","MediaResource":null,"ID":"9",

"Actions":[],

"Properties":[

{"key":"ID","type":"System.String","value":"9"},

{"key":"FileKey_Value","type":"System.String","value":"81"},

76

Developer Guide

{"key":"State_Value","type":"System.String","value":"UÅ"},

{"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

{"key":"DocumentType_Value","-

type":"System.String","value":"txtfile"},

{"key":"Title","type":"System.String","value":"TextDocument"},

{"key":"Summary","type":"System.String","value":"D-9, Tex-

tDocument, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]}

]

},

"FileNo":{

"key":"FileNo","type":"System.String",

"value":"14-10/2"

},

"Officer":{

"key":"Officer","type":"System.String",

"value":"TESTADMIN"

},

"OfficerName":{

"key":"OfficerName","type":"System.String",

"value":"Test Administrator, TESTADMIN"

},

"Register":{

"key":"Register","type":"System.String",

"value":"FILE"

},

"RegisterKey":{

"key":"RegisterKey","type":"System.String",

77

WorkZone Process 2022.0

"value":"81"

},

"InstanceId":{

"key":"InstanceId","type":"System.String",

"value":"a8a7a50c-d10b-4871-8890-e290ac525659"

},

"TaskId":{

"key":"TaskId","type":"System.String",

"value":"22"

}

}

When a user task mail is rendered, a number of UserTaskResponse are included in the
mail. Here the property information is part of the UserTaskResponse, and the properties
are updated to honor any restrictions that access codes may impose on the user who
receives the mail.

A user task response looks as shown below:

(For readability, the type information shown below is removed).

{"$type":"Scanjour.Workflow4.Base.UserTaskResponse, Scan-

jour.Workflow4.Base, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=null",

<responsetemplates>

<responsetemplate name="Actions">

"Action":null,

"Comment":null,

"Properties":

"Documents":

"key":"Docu-

ments","type":"Scanjour.OData.Client.Lite.WorkZone.Record

[]",

"value":[

78

Developer Guide

"ID":"6",

"Actions":[],

"Properties":[

"key":"ID","type":"System.String","value":"6"},

"key":"FileKey_Value","type":"System.String","value":"81"},

"key":"State_Value","type":"System.String","value":"UÅ"},

"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

"key":"DocumentType_Value","-

type":"System.String","value":"Word.Document.12"},

"key":"Title","type":"System.String","value":"WordDokument"},

"key":"Summary","type":"System.String","value":"D-6, WordDok-

ument, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]},

"ID":"7",

"Actions":[],

"Properties":[

"key":"ID","type":"System.String","value":"7"},

"key":"FileKey_Value","type":"System.String","value":"81"},

"key":"State_Value","type":"System.String","value":"UÅ"},

"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

"key":"DocumentType_Value","-

type":"System.String","value":"Excel.Sheet.12"},

"key":"Title","-

type":"System.String","value":"ExcelSpreadSheet"},

"key":"Summary","type":"System.String","value":"D-7, ExcelS-

preadSheet, 29-10-2014"}],

"SubEntries":[],

79

WorkZone Process 2022.0

"Feeds":[]},

"ID":"8",

"Actions":[],

"Properties":[

"key":"ID","type":"System.String","value":"8"},

"key":"FileKey_Value","type":"System.String","value":"81"},

"key":"State_Value","type":"System.String","value":"UÅ"},

"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

"key":"DocumentType_Value","-

type":"System.String","value":"PowerPoint.Show.12"},

"key":"Title","-

type":"System.String","value":"PowerpointPresentation"},

"key":"Summary","type":"System.String","value":"D-8, Power-

pointPresentation, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]},

"ID":"9",

"Actions":[],

"Properties":[

"key":"ID","type":"System.String","value":"9"},

"key":"FileKey_Value","type":"System.String","value":"81"},

"key":"State_Value","type":"System.String","value":"UÅ"},

"key":"RecordType_Value","-

type":"System.String","value":"DOK"},

"key":"DocumentType_Value","-

type":"System.String","value":"txtfile"},

"key":"Title","-

type":"System.String","value":"TextDocument"},

80

Developer Guide

"key":"Summary","type":"System.String","value":"D-9, Tex-

tDocument, 29-10-2014"}],

"SubEntries":[],

"Feeds":[]}]},

"FileNo":

"key":"FileNo","type":"System.String","value":"14-10/2"},

"Officer":

"key":"Officer","type":"System.String","value":"TESTADMIN"},

"OfficerName":

"key":"OfficerName","type":"System.String","value":"Test Admin-

istrator, TESTADMIN"},

"Register":

"key":"Register","type":"System.String","value":"FILE"},

"RegisterKey":

"key":"RegisterKey","type":"System.String","value":"81"},

"InstanceId":

"key":"InstanceId","type":"System.String","value":"a8a7a50c-

d10b-4871-8890-e290ac525659"},

"TaskId":

"key":"TaskId","type":"System.String","value":"21"}},

"Answers":null,

"Identity":null}

</responsetemplate>

</responsetemplates>

Information about the documents is the information on the rendering time of the mail. In order
for the mail to obtain actual values for the documents, the user task has maintained the list of
documents in a child table to the wzp_user_task table named wzp_user_task_attach-
ments.

This table has the following information:

81

WorkZone Process 2022.0

l task_id: The task_id of the user task.

l record_id: The record_key of the document.

l property_name: The property name that the record is part of.

l priority: The order in the property.

l attach: Is set to True if the record will be attached to the mail.

The user task mail can obtain information about the current list of documents and their titles
from OData through the register wzp_user_task_attachment because the record
table is an extension table in this register:

http://sjunittest/OData/WzpUserTaskInserts?&$filter=TaskId

eq'<task_id>' and PropertyName eq ‘Docu-

ments’&$expand=Records&$select=RecordId,Records/Title&$orderby=P-

riority

This allows the mail to show an up-to-date list of documents in the mail while still honoring
the access code protection of the documents.

82

Developer Guide

The forms concept

Upgrade selector controls from 2016 to 2016 R2 83

Forms 85

Init form 90

Edit form 96

Case activity form 108

Containers 108

Controls 111

Form localization 134

Upgrade selector controls from 2016 to 2016 R2

In WorkZone Process 2016 R2 changes have been implemented for methods to select
options in forms. Follow the guidelines below to upgrade forms:

1. In forms that are created with a JavaScript controller, go to the line angu-
lar.module('wzp', ['…. and remove 'ui.select2', 'ui.selector',
'ui.forward','ui.rollbackselector'. Then, if it does not exist already,
add the appropriate wzp controls.

2. In all HTML forms, replace old controls with new ones as follows:

Old element New element Comments

ui:selector wzp:selector Use this for single select-
ors such as mul-
tiple:false, or use it if you
don’t need the pos-
sibility to edit items.

ui:selector wzp-multi-selector Use this for editable mul-
tiple selectors.

83

WorkZone Process 2022.0

ui:filter-selector wzp:filter-selector

ui:sequence-mask-selector wzp:sequence-mask-
selector

ui:forward wzp:forward

usertask-rollbackselector-
panel-helper

wzp-usertask-roll-
backselector-panel-
helper

Use this for HTML attrib-
utes

ui:rollbackselector-panel wzp:rollbackselector-
panel

ui:rollbackselector wzp:rollbackselector-
panel

ui-checkboxselector wzp-checkboxselector Use this for HTML attrib-
utes in the ui:selector
element

3. In all HTML forms replace the old ng-controller with new ones:

Old controller New controller

SelectODATACtrl wzpSelectODATACtrl

SelectODATAWithFilterCtrl wzpSelectODATAWithFilterCtrl

InitFormFilterForSelectorCtrl wzpInitFormFilterForSelectorCtrl

InitFormSequenceMaskForSelect-
orCtrl

wzpIn-
itFormSequenceMaskForSelectorCtrl

SelectUserTaskDocumentsCtrl wzpSelectUserTaskDocumentsCtrl

SelectUserTaskActorsCtrl wzpSelectUserTaskActorsCtrl

CustomEditDocumentController wzpCustomEditDocumentController

SmartTaskFilterForSelectorCtrl zpSmartTaskFilterForSelectorCtrl

4. Remove the attribute wzp-ad-selector-change-label and its value.

84

Developer Guide

5. Remove change-title-variable attribute and its value.

6. For the new wzp:filter-selector control, change the attribute ng-con-
troller-name to ng-controller.

7. For instances of wzp-multi-selector or wzp:rollbackselector that
contain instances of wzp:filter-selector or wzp:sequence-mask-
selector, change the class attribute to class="newline wzp-task-doc-

umentlist wzp-select-with-filter".

8. Separate each wzp-multi-selector by <div class="wzp-task-edit-

document">.

9. Set always-editable="true" for the instance of wzp-multi-selector
or wzp:rollbackselector that you want only in editable mode. An example
would be the use of these selectors in Init forms.

Forms

WorkZone Process forms are based on HTML and JavaScript, which are well-known domains
allowing a large degree of flexibility.

The basic concept is that a central form can be displayed on all clients using the WorkZone
container interface, which is by default supported by WorkZone for Office and WorkZone Cli-
ent.

As a minimum, a form consists of a view and a controller. The view is the visual part of the
form displayed in WorkZone Process, which is configured in HTML using a set of basis con-
trols. The controller contains the validation and business logic of the form, which is imple-
mented in JavaScript.

Prerequisite: Modeling of forms requires basic understanding of HTML and Javascript
as well as the JavaScript libraries Angular, JQuery and WorkZone Process Basis lib-
rary.

Form view

You can configure views using simple HTML elements defined in Basis.js.

Submission Basis is a standard part of WorkZone Process.

85

WorkZone Process 2022.0

<!doctype html>

<html lang="en">

<head>

<title>WorkZone Process</title>

<meta http-equiv="X-UA-Compatible" con-

tent="IE=edge;chrome=1" />

<meta http-equiv="x-dns-prefetch-control" content="off" />

<meta http-equiv="content-type" content="text/html; char-

set=utf-8" />

<meta name="viewport" content="initial-scale=1.0, minimum-

scale=1.0, maximum-scale=1.0, user-scalable=no" />

<link rel="stylesheet" href="Basis/css/app.css" />

<script src="Basis/js/jquery.js"></script>

<script src="Basis/js/angular.js"></script>

<script src="Basis/js/basic.js"></script>

<script localizationfile="" src="Basis/js/{0}.js"></script>

<script localizationfile="" src="Basis/js/init.Submission.

{0}.js"></script>

</head>

<body ui-Intl="init.Submission.">

<div class="wzp-page" ng-cloak>

<form autocomplete="off" name="submissionForm" ui-start-

process ng-controller="FormCtr" novalidate>

<ui:title labelGroup="INITSUBMISSION" label-

l="TITLE"></ui:title>

<ui:text ng-model="dataSource.Title"

labelgroup="INITSUBMISSION" label="PROCESSTITLE" max-length-

h="256" required class="newline"></ui:text>

<ui:datetime name="deadlineControl" labelgroup-

p="INITSUBMISSION" ng-model="dataSource.Deadline" label-

l="DEADLINE" class="newline"></ui:datetime>

<ui:text ng-model="dataSource.Description"

labelgroup="INITSUBMISSION" label="DESCRIPTION" rows="4" max-

length="3999" class="newline"></ui:text>

86

Developer Guide

<div class="wzp-task-editdocument">

<wzp-multi-selector ng-con-

troller="wzpSelectODATACtrl"

ng-

model="dataSource.Documents"

pre-selected-val-

ues="PreSelectDocuments"

labelgroup="CONTROL"

label="DOCUMENTS"

placeholder="SELECT_DOCUMENTS"

options="{

register: 'Records',

filter: searchInCur-

rentCase(),

orderby:documentMruFilter

(),

freetextfield:'Summary',

openItem:{

icon:'content',

title:'metadata',

actionRe-

gister:'Record'

}

}"

always-editable="true"

class="newline wzp-task-doc-

umentlist"

ng-

disabled="defaultValuesNotInitialized()">

<wzp-upload-document ng-mod-

el="dataSource.Documents"></wzp-upload-document>

</wzp-multi-selector>

</div>

<div class="wzp-task-editdocument">

<wzp-multi-selector ng-

87

WorkZone Process 2022.0

controller="wzpSelectODATACtrl"

ng-model="dataSource.Actors"

pre-selected-val-

ues="PreSelectParties"

labelgroup="INITSUBMISSION"

label="ACTORS"

placeholder="SELECT_ACTORS"

options="{ showSelec-

ted:true,

register:

'WzpFileUserRights',

text: ['ID', 'Sum-

mary','NameType_Value','NameCode_Value'],

filter: addContactFilter(),

expand:'NameKey,NameKey/AddressKey',

freetextfield:'tolower(Sum-

mary)',

openItem:

{icon:'metadata',title:'metadata' , actionRegister:'Contact'} ,

orderby :'Summary',

iconType:'contacts'}"

always-editable="true"

class="newline wzp-task-doc-

umentlist wzp-select-with-filter"

ng-dis-

abled="defaultValuesNotInitialized()"

required>

<wzp:sequence-mask-selector-filter ng-mod-

el="twoWayBindings.ActorSequenceMasks"

parent-

ng-model-variable="dataSource.Actors">

</wzp:sequence-mask-selector-filter>

</wzp-multi-selector>

</div>

<div class="wzp-bottom">

88

Developer Guide

<ui:help link="#WZP_UserGuide/Start_basis_sub-

mis-

sion.ht-

m%3FTocPath%3DWorkZone%2520Pro-

cess%2520Bas-

is%2520Package%7CBasis%2520submission%2520processes%7C_____

3"></ui:help>

<div class="wzp-buttonset">

<ui:button label="START" action="submit()" ng-

disabled="isNotValid() || !defaultValuesInitialized"></ui:button>

<ui:button label="CANCEL" action="cancel()"

ng-disabled="defaultValuesNotInitialized()"></ui:button>

</div>

</div>

</form>

</div>

</body>

</html>

WorkZone Process includes a variety of HTML elements which you can use for modeling
views. This table displays some of the basic HTML elements used in the example above.

HTML element Description

ui:title The title of the form.

ui:text A free text field where you for example can set the hight and number of
characters of the control.

ui:datetime Specifies a date and time control.

ui:select A dynamic list element which you can use for listing for example the
WorkZone entities Document, Case and Contact. You can configure the
list with various properties, for example sorting, which can define specific
filters for valid values. You can open the WorkZone entities directly from
the list.

89

WorkZone Process 2022.0

HTML element Description

ui:help Points to context sensitive help. For customized solutions this can point to
a given URL.

ui:button Executes an action on the form.

See a list of basic elements in the API documentation where properties are specified.

Init form

Actor sequences in smart task Init forms

Actor sequence can be used for selecting actors in the InitForm\SmartTask selector
control for actors (or a similar register) with the new wzp:sequence-mask-selector

control.

Follow these steps to configure this option.

1. Add the css class wzp-select-with-filter to wzp:selector or
wzp:rollbackselector.

2. Add the wzp:sequence-mask-selector control inside the parent selector
with the attributes described in the table below:

3.

Attribute
name

Description Example or comments

ng-

model

A pointer to the
source model prop-
erty, which this con-
trol is bound to.
Should be unique.

twoWayBind-

ings.ActorSequenceMasks

ng-con-

troller

The name of the con-
troller.

“wzpIn-

itFormSequenceMaskForSelect-

orCtrl” for InitForm,

“wzpS-

martTaskSequenceMaskForSelect-

orCtrl” for SmartTask

90

http://help.workzone.kmd.dk/wzp/2022_0/APIForms/

Developer Guide

parent-

ng-

model-

vari-

able

Should be equal to
the 'ng-model'
attribute of the parent
wzp.selector or
wzp.roll-

backselector,
and contains '.'

dataSource.Actors

Example: A wzp:selector with a wzp:sequence-mask-selector control for an Init form:

<wzp:selector ng-controller="wzpSelectODATACtrl"

ng-model="dataSource.Actors"

labelgroup="SUBMISSIONFORM"

label="ACTORS"

placeholder="SELECT_ACTORS"

options="{

showSelected:true,

register: 'WzpFileUserRights',

text: ['ID', 'Summary','NameType_Value','NameCode_Value'],

filter: addcontactfilter(),

expand:'NameKey,NameKey/AddressKey',

freetextfield:'tolower(Summary)',

openItem:{icon:'metadata',title:'metadata' , actionRe-

gister:'Contact'} ,

orderby :'Summary',

iconType:'contacts'}"

class="newline wzp-select-with-filter"

required

ng-disabled="formisdisabled">

<wzp:sequence-mask-selector

ng-controller="wzpInitFormSequenceMaskForSelectorCtrl"

91

WorkZone Process 2022.0

ng-model="twoWayBindings.ActorSequenceMasks"

parent-ng-model-variable="dataSource.Actors"

class="newline">

</wzp:sequence-mask-selector>

</wzp:selector>

Example: A wzp:rollbackselector with a wzp:sequence-mask-selector control for

a Smart Task:

<wzp:rollbackselector

ng-model="twoWayBindings.Actors"

ng-controller="CustomEditDocumentController"

default-data-context-name="ActiveActors"

item-convertor-name="converterFromOdataToSelectorForActors"

save-result-convertor-name-

e="updateActorsFromSomethingConverter"

options="{showSelected:true,

openItem:{icon:'metadata',title:'metadata' , actionRe-

gister:'Contact'} ,

iconType:'contacts',

datacontextName: 'ValidActors'

}"

readonly="noCapability('execute','online')"

labelgroup="CONTROL"

label="ACTORS"

placeholder="SELECT_PARTIES"

hide-indicator="twoWayBindings.editActorControlIsHidden"

class="newline wzp-task-documentlist body-column wzp-select-

with-filter">

<wzp:sequence-mask-selector

ng-controller="wzpSmartTaskSequenceMaskForSelectorCtrl"

92

Developer Guide

ng-model="twoWayBindings.ActorSequenceMasks"

ng-hide="noCapability('execute','online')"

parent-ng-model-variable="twoWayBindings.Actors"

class="newline">

</wzp:sequence-mask-selector>

</wzp:rollbackselector>

Init form container interface

1. Interface object representing the Init Form container will be known in JavaScript
as window.wzp.container.

2. The Init form container object must have the following fields and methods:

l string baseUri

Base URI of web site containing services required by form, namely:
OData and Process control services.

l string locale

Current locale of the client (e.g. en-GB, da-DK).

l string processDefinition

Global unique identifier of definition of process to be started.

l object context

Description of the context where process to be started.

l string register

name of the context entity register.

l string key

identifier of the context entity within the register.

l string[] tags

additional descriptors of the context.

l void openItemContent (string register, string systemKey, string title)

93

WorkZone Process 2022.0

Opens item`s content in an app/client responsible for showing the
content. Where register is SOM register.

l void openItemMetadata (string register, string systemKey)

Opens item`s metadata in an app/client responsible for showings
the metadata. Where register is the SOM register.

l void close (bool success, string processid)

Tells the container that init form should be closed, supplies overall
result (success parameter) and identifier of newly started process.

l object notifications

Service providing the unified interface for displaying and further
handling of notifications.

l void info (string message) tells user something important.

l void error (string message) notifies user about error.

l void warning (string message) warns user about something.

l bool confirm (string message) asks user to make a binary
decision.

l void contentLoaded (bool success)

Informs container that form and its content was loaded successfully
or not.

l bool showTitle (string message)

Method that allow container to show form Title on the level of con-
tainer presentation. Should return true , is container will show title,
or return false , if showing title is responsibility of form itself. Mes-
sage is form Title (already localized).

94

Developer Guide

l bool showHelp (string url)

Method that allows container to open help url on the level of container
presentation. Url is localized. Should return true, is container want to
show help itself, or return false, if showing help is responsibility of form
itself.

l object formats

Description of different formats. Allows container to customize visual
presentation of data. If not defined corresponding formats will be taken
from localization resources of basis package. Date\Time format should
use JQuery Date\Time specification. (See below)

l string longdate

definition of Long Date format

l string shortdate

definition of Short Date format

l int timezone

definition of client timezoneoffset value in minutes.
TimezoneOffset should be calculated as UTC-localtime, in
minutes.

l string shorttime

definition of Short Time format

l string longtime

definition of Long Time format

l string odataUri

URI of oData service required by form. If not provided, default baseUri
property is used as fallback.

Example:

95

WorkZone Process 2022.0

http(s)://[endpoint]/odata/

l string processUri

URI of Process service required by form. If not provided, default
baseUri property is used as fallback.

Example:

http(s)://[endpoint]/Process.Process.svc/

l object AuthorizationHeader

The AuthorizationHeader object must contain an Authorization prop-
erty with the token for OAuth authentication.

Example:

AuthorizationHeader

{

Authorization: "Bearer eyJh-

bGciOiJSUzI1NiIsImt-

pZCI6Ijg3NTl-

hMmViNDEwZjI1NTE1ODMwZWQxZWU2MDhlZmY2Ii-

widHl-

wIjoiSldUIn0.eyJuYmYiOjE1OTM2MDM1NTUsImV4cCI6MTU-

5MzYwNzE1NSwiaXNzI-

joiaHR0cDovL2RiMDEvb2F1dGgyIiwi"

}

Edit form

Edit forms allow you to edit properties of an existing process.

Each package should have at least one edit form definition, a default edit form HTML and a
controller (js) file.

96

Developer Guide

Definition:

<FormDefinition>

<FormGuid>{ EditForm Guid}</FormGuid>

<Name>Edit.Default</Name>

<Default>J</Default>

<ContentType>TEXT/HTML</ContentType>

<ContentFile>ui\edit.Default.html</ContentFile>

<ControllerFile>ui\edit.Default.js</ControllerFile>

</FormDefinition>

The same GUID should be defined for each workflow definition:

<WorkflowDefinition>

<Version>6.0.0.0</Version>

<XamlFile>Workflows\Submission.xaml</XamlFile>

<EditFormGuid>{ EditForm Guid }</EditFormGuid>

Default Edit form html file

The edit form allows you to modify title, description, deadline (DueDate), and priority of an
existing process.

<!doctype html>

<html lang="en">

<head>

<title>WorkZone Process Edit Page</title>

<meta http-equiv="X-UA-Compatible" content="IE=edge;chrome=1" />

<meta http-equiv="x-dns-prefetch-control" content="off" />

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<meta name="viewport" content="initial-scale=1.0, minimum-scale=1.0, maximum-
scale=1.0, user-scalable=no" />

<link rel="stylesheet" href="Basis_6.0.0.0/css/app_6.0.0.0.css" />

97

WorkZone Process 2022.0

<script src="Basis_6.0.0.0/js/jquery_6.0.0.0.js"></script>

<script src="Basis_6.0.0.0/js/angular_6.0.0.0.js"></script>

<script src="Basis_6.0.0.0/js/basic_6.0.0.0.js"></script>

<script localizationfile="" src="Basis_6.0.0.0/js/{0}_6.0.0.0.js"></script>

<script localizationfile="" src="Basis_6.0.0.0/js/init.Submission.{0}_
6.0.0.0.js"></script>

</head>

<body ui-intl="init.Submission.">

<div class="wzp-page" ng-cloak>

<form autocomplete="off" name="editForm" novalidate wzp-edit-process >

<ui:title labelgroup="SUBMISSIONFORM" label="EDITFORM"></ui:title>

<ui:text ng-model="dataSource.Title" labelgroup="HEARINGFORM" label-
l="PROCESSTITLE" max-length="256" required class="newline" ></ui:text>

<div class="twoRowBlock">

<ui:datetime name="deadlineControl"

labelgroup="EDITFORM"

ng-model="dataSource.DueDate"

label="DEADLINE"

class="twoRowDate">

</ui:datetime>

<wzp:selector ng-controller="wzpSelectODATACtrl"

ng-model="dataSource.Priority"

labelgroup="CONTROL"

label="PRIORITY"

options="{

multiple:false,

allowClear:false,

minimumInputLength:0,

minimumResultsForSearch:-1,

98

Developer Guide

query: PriorityQuery }"

placeholder="SELECT_PRIORITY"

class="twoRowSelector">

</wzp:selector>

</div>

<ui:text ng-model="dataSource.Description" labelgroup="SUBMISSIONFORM"
label="DESCRIPTION" rows="4" max-length="3999" class="newline" ></ui:text>

<div class="wzp-bottom">

<ui:help link="#Prcs_overview/Use_the_process_overview.htm#Edit_pro-
cess_details%3FTocPath%3DThe%2520Pro-
cesses%2520over-
view%7CUse%2520the%2520Processes%2520overview%7C_____
5"></ui:help>

<div class="wzp-buttonset">

<ui:button label="SAVE" action="submit()" ng-disabled="isNotValid
()"></ui:button>

<ui:button label="CANCEL" action="cancel()"></ui:button>

</div>

</div>

</form>

</div>

</body>

</html>

Note: The main angular directive for an edit form is wzp-edit-process. For more inform-
ation, see API Forms.

99

http://help.workzone.kmd.dk/wzp/2022_0/APIForms/api

WorkZone Process 2022.0

Default Edit form controller (JS) file

"use strict";

(function (window, angular, undefined) {

angular.module('wzp', ['ngResource', 'ngUtilities', 'loc-

alize', 'common.services', 'wzp.filters', 'settings',

'ui.helpers', 'ui.title', 'ui.text', 'ui.datetime', 'ui.sort-

able', 'ui.button', 'ui.help', 'wzp.edit-pro-

cess','wzp.controls']);

window.init = function (wzpContainer) {

var editFormContainer = new window.EditFormContainer(wzpContainer);

angular.module('wzp').constant('wzpContainer', editFormContainer);

angular.bootstrap(window.document, ['wzp'])

}

})(window, window.angular);

The code for the EditFormContainer class is defined in the basis.js file in the Basis pack-
age.

Edit form container

The Edit form container API corresponds to the API of the Init form container except for the
following:

l context.key value equal WzpWorkflowInstances . ID value

In the WorkZone Process Overview , only the Edit form container is available.

See Init form container interface.

100

Developer Guide

Smart tasks container

The Smart tasks container combine API elements from the Init forms API and the Smart task
container API extended with the following fields and methods:

l the context.key value equals the Smart Task.ID value

l the processDefinition value should be empty

l bool useSmartContainer should equal true

l should contain the capabilities property from the Smart task container API

l void reload ()
Method that allows a container reload iframe with a Smart task form on form request

l void blockUI () and void unblockUI()
Methods that allow a form to ask for a Container block\unblock frame.

See Init form container interface.

Smart task container interface

User task container is an extended init form container. It means that it should implement the
same interface as init form container (except for the context field) plus:

l Object data

Contains routines for getting data from the data context. Encapsulates online / off-
line data management from the form.

l json get(string contextName, string filter)

Returns single page of OData response (in online mode) or complete
set of offline data for specified context. See the description of json type
below. Parameter “Filter” is additional ODATA like string that should be
added to original Odata request (this functionality can be changed in
future)

l feed getFeed(string contextName, string filter)

Returns feed object with a first page of OData response (in online
mode) or complete set of offline data for specified context. See the inter-
face of feed type below. Parameter “Filter” is additional ODATA like

101

WorkZone Process 2022.0

string that should be added to original Odata request (this func-
tionality can be changed in future)

l bool executeAction(string name, json data)

Executes action on the user task and supplies data. Should return false in case of
error (after showing error). False as response after error made possible to do some
other actions in this Task.

l json capabilities

Provides a JSON list of array of string values in json format. For now, there are
the following capabilities:

l print – having the capability in the list means that printing is supported.

l online - having the capability in the list means that container is in
online mode.

l execute – having the capability in the list means that an action can be
executed.

The list should be maintained along emerging new capabilities.

l json getContextData ()

Returns data for Context section of smarttask Metadata XML. See the
description of json type below.

l bool executeUserTask()

Executes user task and should change User Task status. Should return false in
case of error (after showing error). False as response after error made possible
to do some other actions in this Task.

l bool executeNonFinalAction (string name, json data)

Executes an action which does not change the state of the user task and sup-
plies data. In case of an error, it will return false. After this action it is possible
to do other actions in this task.

102

Developer Guide

Interface of feed type

l json result

Contains response object for the certain part of the feed.

l feed next()

Returns continuation of the feed or null if there is no more data.

l bool hasMorePages

defines if is there any more data in the feed that can be returned by calling next()
function.

Passing json data

JSON data is passed to / from container in a string form.

Smart task container initialization sequence

1. Preprocess HTML:

l Replace <BASE/> tag if local assets cache is used.

l Parse smart task metadata XML contained in the body of smart task.

l Initialize container instance with context and data contexts taken from
parsed metadata.

2. Create web-browser / iframe and load HTML content there.

3. When the content is loaded, attach the container instance to web-browser / iframe
if necessary, and invoke

window.init(container)

103

WorkZone Process 2022.0

in the context of web-browser / iframe. For Outlook (If WebBrowser control is
used), window.external should be used as a container argument.

Smart task metadata XML schema

See descriptions of each response template under Response Templates.

<context register="wzp_user_task" key="21">

</context>

<responsetemplates>

<responsetemplate name="Actions>

</responsetemplate>

<responsetemplate name="Forward>

</responsetemplate>

<responsetemplate name="Update>

</responsetemplate>

</responsetemplates>

<data>

<datacontext name="ForwardActors" query="***">

</datacontext>

<datacontext name="ActionLog" query="***">

</datacontext>

<datacontext name="AnswerDocuments" query="***'">

</datacontext>

104

Developer Guide

</data>

<smarttask>

<context register=”wzp_usertask” key=”123”/>

<data>

<datacontext name=”Cases” query=”Files”>

<!-- offline data goes here -->

</datacontext>

<datacontext name=”Contacts” query-

y=”Contacts?$select=ID,Summary”>

<!-- offline data goes here -->

</datacontext>

</data>

</smarttask>

The way smart task meta data and base address is present in HTML (required for pre-
processor, take into an account that HTML is not XML, so you shouldn’t parse the whole smart
task form using XML parser):

<!doctype html>

<html>

<head>

<base href=”...”/>

...

</head>

<body>

...

<script language=”text/xmldata” id=”metadata”>

<smarttask>

...

</smarttask>

</script>

</body>

105

WorkZone Process 2022.0

</html>

Response Templates

Actions

The response template "Actions" contains the following fields:

l Action: The action the response is issuing.

l Comment: The comment that follows the action.

l Properties: The user task properties.

l Answers: An optional Record[] containing the response documents.

l Identity : The user task identity.

Forward

The response template "Forward" contains the following fields:

l Action: The action the response is issuing.

l Comment: The comment that follows the action.

l Properties: The user task properties.

l Answers: An optional Record[] containing the response documents.

l Identity: The user task identity.

l Actor: The actor that the user task is forwarded to.

Update

The response template "Update" contains the following fields:

l Action: The action the response is issuing.

l Comment: The comment that follows the action.

l Properties: The user task properties with updated documents.

l Answers: An optional Record[] containing the response documents.

l Identity: The user task identity.

l Attachments: The properties containing updated attachments.

l Actors: The updated actor list with new/obsolete/reordered actors.

106

Developer Guide

Newmethods in the Smart Task Container Interface

In object data, two new methods have been added for WorkZone Process 2014 R2.

l feed getOdataFeed (string query)

Returns a feed object with a first page of OData response for the OData request
provided as a parameter (in online mode). In offline mode, it should return an
empty feed.

l json getOdataEntry (string query)

Returns a json object as a result of the OData response for the OData request
provided as a parameter (in online mode). In offline mode, it should return the res-
ult null.

For WorkZone Process 2017, new properties and methods have been added.

Properties

l SupportAsync

if True, the container is working in Async mode and all functions are called with
callback as last the parameter.

l supportExecuteAllActions

if True, the container has the executeAllActions function.

l supportPreselectedValues

if True, the container supports pre-select Values functionality.

Functions

l executeAllActions(string noFinalName,Json noFinalData, string finalName,
JSOn finalData,)

Executes non-final actions at first and then executes final actions.

l getPreselectedValues()

107

WorkZone Process 2022.0

Returns a Json String as a Dictionary of Keys to Arrays of IDs for the pre-selec-
ted values functionality. It is allowed to preselect values in selector controls. For
example, {"PreSelectParties":[{"ID":"381"},{"ID":"201"}],"PreSelectDocuments":
[{"ID":"435"},{"ID":"436"},{"ID":"494"}]}".

Case activity form

The case activity form is a specific type of a smart task form and it should define the fol-
lowing properties for the js-controller:

window.init = function (wzpContainer) {

wzpContainer.isCaseActivityForm = true;

wzpContainer.haveLockTakeOverFunctionality = false;

angular.module('wzput').constant('wzpContainer', wzpContainer);

angular.bootstrap(window.document, ['wzput']);

};

Case activity container

The Case activity container is a specific occurrence of the Smart task container. It is actu-
ally an asynchronous Smart task container interface with a lot of functionality that has been
implemented internally. The functionality is also used for forms in WorkZone Client smart
tasks.

See Smart tasks container.

Containers

Standard container

108

Developer Guide

Building custom form containers

Changes in the interaction between Container and form controls

In WorkZone Process 2014 R2, interaction between the container and form controls has been
changed in order to support the error handling interface. A new 'wzpContainerHelper'

module has been implemented and this must be used instead of 'wzpContainer'.

Important: The 'wzpContainerHelper' module has the same structure as the con-
tainer, but it will contain additional functionality for event handling and dynamic cap-
ability (not implemented yet).

Changes in the form controllers

1. You should still inject the WorkZone Process control in the form module in the
form controller as before: angular.module('wzput').constant
('wzpContainer', wzpContainer);

2. You no longer need to inject the addition ‘localContainer’ (and related js-
definitions): angular.module('wzput').constant('localContainer', localContainer);

3. You must add the new angular service 'wzpContainerHelper': angu-
lar.module('wzput', ['ngResource', 'ngProgressLite',

'ngUtilities', 'localize', 'wzpContainerHelper', 'wzp.-

filters', 'settings' …]);

4. Use 'wzpContainerHelper' in all controls and controllers to work with the
Container API instead of 'wzpContainer', which is obsolete.

Support of custom containers

If your form needs to use some custom properties of the functions, then either extend
'wzpContainerHelper' or create a new custom module and use this instead of
'wzpContainerHelper'.

Example: The extension 'wzpContainerHelper' module.

angular.module('wzp').config(function ($provide) {

//decorator to wrap uiHelper service

109

WorkZone Process 2022.0

$provide.decorator('wzpContainerHelper', function ($deleg-

ate) {

// override or add any functions in uiHelper

$delegate.CustomFunction = function (options, value) {

// put overwriting code here

this.wzpContainer.customFunction(options, value)

}

return $delegate;

})

});

Example: Definition of the custom ContainerHelper module.

angular.module('wzpContainerHelper').factory('wzpCon-

tainerHelperCustom',

['wzpContainerHelper', 'wzpContainer', function (wzpCon-

tainerHelper, wzpContainer) { wzpContainer.customFunction =

function (){

return wzpContainer.customFunction();

}

return wzpContainer;

}]);

Support for dirty marking in containers (Dirty Marking API)

Smarttasks can track a user's changes and inform the WorkZone Client form container
about it, if the container supports the Dirty Marking API.

To set up the container to support the Dirty Marking API, you need to:

l Set the supportDirtyFlag property to true, supportDirtyFlag = true.

l Apply the changeDirtyState(isDirty) method. The method will be called with
isDirty = true, when the smarttask recives some changes. If the changes
were deleted or changed back, the same method will be called with the flag
isDirty = false.

110

Developer Guide

WorkZone Process smarttasks support track changes in the following controls:

l Document and Actors multi-selectors

l Comment field

l Answers selectors

l Forward\Reject To\Conditional selectors

Controls

Upgrade selector controls from 2016 to 2016 R2

In WorkZone Process 2016 R2 changes have been implemented for methods to select
options in forms. Follow the guidelines below to upgrade forms:

1. In forms that are created with a JavaScript controller, go to the line angu-
lar.module('wzp', ['…. and remove 'ui.select2', 'ui.selector',
'ui.forward','ui.rollbackselector'. Then, if it does not exist already,
add the appropriate wzp controls.

2. In all HTML forms, replace old controls with new ones as follows:

Old element New element Comments

ui:selector wzp:selector Use this for single select-
ors such as mul-
tiple:false, or use it if you
don’t need the pos-
sibility to edit items.

ui:selector wzp-multi-selector Use this for editable mul-
tiple selectors.

ui:filter-selector wzp:filter-selector

ui:sequence-mask-selector wzp:sequence-mask-
selector

ui:forward wzp:forward

111

WorkZone Process 2022.0

usertask-rollbackselector-
panel-helper

wzp-usertask-roll-
backselector-panel-
helper

Use this for HTML attrib-
utes

ui:rollbackselector-panel wzp:rollbackselector-
panel

ui:rollbackselector wzp:rollbackselector-
panel

ui-checkboxselector wzp-checkboxselector Use this for HTML attrib-
utes in the ui:selector
element

3. In all HTML forms replace the old ng-controller with new ones:

Old controller New controller

SelectODATACtrl wzpSelectODATACtrl

SelectODATAWithFilterCtrl wzpSelectODATAWithFilterCtrl

InitFormFilterForSelectorCtrl wzpInitFormFilterForSelectorCtrl

InitFormSequenceMaskForSelect-
orCtrl

wzpIn-
itFormSequenceMaskForSelectorCtrl

SelectUserTaskDocumentsCtrl wzpSelectUserTaskDocumentsCtrl

SelectUserTaskActorsCtrl wzpSelectUserTaskActorsCtrl

CustomEditDocumentController wzpCustomEditDocumentController

SmartTaskFilterForSelectorCtrl zpSmartTaskFilterForSelectorCtrl

4. Remove the attribute wzp-ad-selector-change-label and its value.

5. Remove change-title-variable attribute and its value.

6. For the new wzp:filter-selector control, change the attribute ng-con-
troller-name to ng-controller.

7. For instances of wzp-multi-selector or wzp:rollbackselector that
contain instances of wzp:filter-selector or wzp:sequence-mask-

112

Developer Guide

selector, change the class attribute to class="newline wzp-task-doc-

umentlist wzp-select-with-filter".

8. Separate each wzp-multi-selector by <div class="wzp-task-edit-

document">.

9. Set always-editable="true" for the instance of wzp-multi-selector
or wzp:rollbackselector that you want only in editable mode. An example
would be the use of these selectors in Init forms.

Form basic controls

WorkZone Process has a standard library containing a number of Basic forms controls. These
are embedded in the Basic.js package. For more information about the form controls, see API
Documentation

ui:title

ui:text

ui:datetime

ui:select

ui:help

ui:button

ui:startprocess

ui:actions

ui:action

wzp:forward

ui:usertask

ui:label

ui:comment

ui:link

ui:repeatview

ui:checkbox

ui:integer

113

http://help.workzone.kmd.dk/wzp/2022_0/APIForms/api
http://help.workzone.kmd.dk/wzp/2022_0/APIForms/api

WorkZone Process 2022.0

Editable controls in smarttasks

About components

To fully enable the functionality of editing the list of documents and/or actors (or any other
dynamic list related to a task) in a smart task, the controls must be used together. In the
view file (HTML) of the smart task, follow these steps:

1. Add the wzp:rollbackselector control for each list that must be editable.

2. Add one wzp:rollbackselector-panel control for managing general
save and cancel actions for these controls.

3. Optionally, use a specific expand-panel construction for collapsing/expanding
wzp:rollbackselector. (See Configure expanding/collapsing a wzp:roll-
backselector section).

4. In the controller file (JS) of the smart task implementation, add the module
wzp.controls to the list of modules in the smart task controller:

angular.module('wzput', ['ngResource', 'ngPro-

gressLite', 'ngUtilities', 'localize', 'wzp.-

filters', 'settings', 'ui.help', 'wzp.controls',

'ui.actions', 'ui.action', 'ui.usertask', 'ui.-

comment', 'ui.label', 'ui.link', 'ngProgressLite',

'ui.helpers', 'ui.repeatview');

The wzp.rollbackselector control

This control allows showing items from a dynamic collection related to a smart task and
changing them (add, delete and reorder), and after that saving or canceling these changes
with or without completing the current smart task.

Data context

Each wzp:rollbackselector control needs two DataContextDefinition to get
access to dynamic data. One for preselected values, and one for possible choices. The

114

Developer Guide

collection can return different sets of properties, but it should be converted to the same item's
collections by the converters of the control.

Examples

To edit a list of documents, these two data contexts can be used.

l For a document already selected for the current smart task:

<DataContextDefinition>

<Name>AttachedDocuments</Name>

<Query>WzpUserTaskInserts?$filter=TaskId eq '{0}' and Attach eq true&$-
expand=Records&$select=RecordId,Records/Title,Records/State_Value,Re-
cords/RecordType_Value,Records/DocumentType_
Value,Records/Summary&$orderby=Priority</Query>

<MaxOfflinePages>3</MaxOfflinePages>

<Parameters>

<Parameter>TaskId</Parameter>

</Parameters>

</DataContextDefinition>

l For a document that can be added to the smart task:

<DataContextDefinition>

<Name>AnswerDocuments</Name> <Query>Re-
cords?$select=ID,Summary,DocumentType_Value,State_Value&$orderby-
y=ID,Summary&$filter=FileKey_Value eq '{0}' and State_Value ne 'UP' and
ExternalDocId ne '' </Query>

<MaxOfflinePages>10</MaxOfflinePages>

<Parameters>

<Parameter>RegisterKey</Parameter>

</Parameters>

</DataContextDefinition>

To edit a list of documents, these two data contexts can be used.

l For representing actors for all active smart task for the current process:

115

WorkZone Process 2022.0

<DataContextDefinition>

<Name>ActiveActors</Name> <Query>WzpUser-
Tasks?$expand=NameKey&$select=InstanceId,NameKey_Value,TaskState_
Value,NameKey/ID,NameKey/Summary,NameKey/NameType_
Value,NameKey/NameCode&$filter=InstanceId eq '{0}' and (TaskState_Value
eq 'OPEN' or TaskState_Value eq 'PENDING')&$orderby=TaskOrder</Query>

<MaxOfflinePages>10</MaxOfflinePages>

<Parameters>

<Parameter>InstanceId</Parameter>

</Parameters>

</DataContextDefinition>

l For actors that can be added the smart task:

<DataContextDefinition>

<Name>ForwardActors</Name> <Query>WzpFileUser-
Rights?$select=ID,Summary,NameType_Value,NameCode_Value&$-
expand-
d=NameKey,NameKey/AddressKey&$orderby=Summary&$filter=FileKey
eq '{0}' and NameKey/AddressKey/Email ne ''</Query>

<MaxOfflinePages>10</MaxOfflinePages>

<Parameters>

<Parameter>RegisterKey</Parameter>

</Parameters>

</DataContextDefinition>

Add filters in the wzp.controls

You can enable predefined filtering options for the wzp.selector control in the init form
or the wzp.rollbackselector control in the smarttask form.

Filtering options for the Init form

To add a filter control in the wzp.selector control in the Init form, follow these steps:

116

Developer Guide

1. Add or modify the wzp.selector control (“parent” selector):

a. Change the ng-controller value to
"wzpSelectODATAWithFilterCtrl".

b. Add the css class “wzp-select-with-filter” for correct styl-
ing.

c. Add the attribute wzp-ad-selector-change-label with the fol-
lowing expression:

{{<twoWayBind-

ings>.<DocumentLabelWithFilterValue>}}",

where the variable “twoWayBind-
ings.DocumentLabelWithFilterValue” is equal to the
"change-title-variable" attribute in the nested wzp:-
filter-selector control.

d. Add the attribute wzp-ad-selector-filter-variable.

This should contain a variable equal to the "ng-model" attribute
in the nested wzp:filter-selector control.

2. Add the wzp:filter-selector control inside the parent selector with these
parameters:

Attribute Description Example or comment

ng-model A pointer to the
source model
property, which
this control is
bound to. It
should be equal
to the 'wzp-ad-
selector-fil-

ter-vari-

able' attribute of
the parent wzp.-
control and

twoWayBindings.DocumentFilters

117

WorkZone Process 2022.0

Attribute Description Example or comment

contains '.'.

ng-con-
troller

Name of con-
troller

wzpInitFormFilterForSelectorCtrl

predefined-
filter-
register

Register of parent
selector

Record

change-
title-vari-
able

A pointer to the 2-
way binding vari-
able for updating
the parent label. It
should be equal
to the expression
in the 'wzp-ad-
selector-

change-

label' attribute
of the parent
wzp.control.

twoWayBind-

ings.DocumentLabelWithFilterValue

3. Define the <twoWayBindings> object in scope of the ui.startprocess
controller of the Init form.

$scope.twoWayBindings = {};

This is an example of a wzp.control with a filter control for documents:

<wzp:selector

ng-model="dataSource.Documents"

ng-controller="wzpSelectODATAWithFilterCtrl"

labelgroup="ADV_SHARED"

label="DOCUMENTS"

placeholder="SELECT_DOCUMENTS"

options="{

118

Developer Guide

register: 'Records',

filter: searchInCurrentCase(),

freetextfield:'Summary',

openItem:

{icon:'content',title:'metadata',actionRegister:'Record'} }"

class="newline wzp-select-with-filter"

ng-disabled="formisdisabled"

wzp-ad-selector-change-label="{{twoWayBind-

ings.DocumentLabelWithFilterValue}}"

wzp-ad-selector-filter-vari-

able="twoWayBindings.DocumentFilters">

<wzp:filter-selector

ng-controller="wzpInitFormFilterForSelectorCtrl"

ng-model="twoWayBindings.DocumentFilters"

predefined-filter-register="Record"

change-title-vari-

able="twoWayBindings.DocumentLabelWithFilterValue"

class="newline">

</wzp:filter-selector>

</wzp:selector>

Filtering options for the smarttask form

To enable filtering options in the smarttask form, you need to perform steps similar to the steps
for the wzp.selector for the Init form but with the following differences:

1. For the wzp.rollbackselector control (“parent” selector control instead of
wzp.selector):

a. Use the ng-controller for the wzp.rollbackcontrol. No spe-
cial ng-controller is necessary.

b. Add query: getQueryWithFilter in the options attribute.

119

WorkZone Process 2022.0

2. For the wzp:filter-selector control inside the parent selector, define
the following additional parameters:

a. ng-con-

troller="wzpSmartTaskFilterForSelectorCtrl".

b. ng-hide="noCapability('execute','online')" to hide
the filter control in offline/read-only mode.

wzp.rollbackselector with a filter control for documents:

<wzp:rollbackselector

ng-model="Documents"

ng-controller="wzpCustomEditDocumentController"

default-data-context-name="AttachedDocuments"

item-convertor-name="converterFromOdataToSelectorForAttachments"

save-result-convertor-name="updateDocumentsFromAttachmentConverter"

options="{

register: 'Records',

openItem:{ actionRegister:'Record'},

datacontextName: 'DocumentsContext',

query: getQueryWithFilter

}"

readonly="noCapability('execute','online')"

labelgroup="CONTROL"

label="DOCUMENTS"

placeholder="SELECT_DOCUMENTS"

class="newline wzp-task-documentlist wzp-select-with-filter"

wzp-ad-selector-change-label="{{twoWayBind-
ings.DocumentLabelWithFilterValue}}"

wzp-ad-selector-filter-variable="twoWayBindings.DocumentFilters"

>

120

Developer Guide

<wzp:filter-selector

ng-controller="wzpSmartTaskFilterForSelectorCtrl"

ng-hide="noCapability('execute','online')"

ng-model="twoWayBindings.DocumentFilters"

predefined-filter-register="Record"

change-title-variable="twoWayBindings.DocumentLabelWithFilterValue"

class="newline">

</wzp:filter-selector>

</wzp:rollbackselector>

Control specification

Control specification should be placed in div with css style class definition. The default css
class is wzp-task-editdocument.

Examples

l Editing documents

<div class="wzp-task-editdocument">

<wzp:rollbackselector

ng-model="Docs"

ng-controller="wzpCustomEditDocumentController"

default-data-context-name="AttachedDocuments"

item-convertor-name="converterFromOdataToSelectorForAttachments"

save-result-convertor-name="updateDocumentsFromAttachmentConverter"

options="{ register: 'Records', openItem:{ actionRegister:'Record'}, datacontextName:
'AnswerDocuments'}"

readonly="noCapability('execute','online')"

labelgroup="CONTROL"

label="DOCUMENTS"

121

WorkZone Process 2022.0

placeholder="SELECT_DOCUMENTS"

required

class="newline wzp-task-documentlist">

</wzp:rollbackselector>

</div>

l Editing actors

<div class="wzp-task-editdocument expand-panel-body" ng-hide-
e="!actorEditVisible">

<wzp:rollbackselector

ng-model="Actors"

ng-controller="wzpCustomEditDocumentController"

default-data-context-name="ActiveActors"

item-convertor-name="converterFromOdataToSelectorForActors"

save-result-convertor-name="updateActorsFromSomethingConverter"

options="{showSelected:true, openItem:{icon:'metadata',title:'metadata' , actionRe-
gister:'Contact'} , iconType:'contacts', datacontextName: 'ForwardActors'}"

readonly="noCapability('execute','online')"

labelgroup="CONTROL"

label="ACTORS"

placeholder="SELECT_PARTIES"

class="newline wzp-task-documentlist body-column">

</wzp:rollbackselector>

</div>

Controller and converter functions

The Basis package contains a custom controller for the wzp.rollbackselector con-
trol for editing the documents list and the actors list.

It contains two pairs of converters (one for documents and one for actors):

122

Developer Guide

l A converter for presenting information from DataContextDefinition which has
a format that is suitable for the wzp.rollbackselector control (the names of the
converter functions are used in the attribute item-convertor-name of the
wzp.rollbackselector).

l A converter for saving changes (the names of the converter functions are used in the
attribute save-result-convertor-name of the wzp.rollbackselector).

Also, the controller should have an init part, which initializes converters and overwrites the
openSelectedItemHandler delegate.

function init() {

$scope.$$childTail.itemConvertor = $scope

[$scope.$$childTail.itemConvertorName];

$scope.$$childTail.openSelectedItemHandler = doc-

umentOpenSelectItemHandler;

$scope.$$childTail.saveResultConvertor = $scope

[$scope.$$childTail.saveResultConvertorName];

};

Сontroller structure

angular.module('wzp.rollbackselector').controller('Cus-

tomEditDocumentController',['$scope',function ($scope)

{

/* Converters for Document*/

$scope.converterFromOdataToSelectorForAttachments = function

(data, options, helpers) {};

$scope.updateDocumentsFromAttachmentConverter = function

(data, result, hasChangesDelegate) { };

/* Converters for Actors*/

$scope.converterFromOdataToSelectorForActors = function (data,

options, helpers) {}

$scope.updateActorsFromSomethingConverter = function (data,

result, hasChangesDelegate) {};

123

WorkZone Process 2022.0

/* overwrite openSelectedItemHandler delegate */

function documentOpenSelectItemHandler(itemData, hand-

lerName) {

if (itemData.actionregister === 'Record') {

if (!itemData.text && !itemData.type)

return;

} $scope.$$childTail.baseOpenSelectedItemHandler(itemData,

handlerName);

};

/* Function to init wzp.rollbackselector with convectors.

Mandatory for custom controllers. */

function init() { };

init();

}]);

Examples of an item converter

These converters convert items from the data parameter to an array of objects using control
options (options parameter) and some static methods (helpers parameter).

The structure of the data object depends on the ODATA request's result, defined by the cor-
responding DataContextDefinition.

A returned array of items should have the following properties: id, text, register,
icon, type, namecode, actionregister.

If wzp.rollbackselector has any customizations, then the properties of returned
items should be aligned with them.

Example of item converter for editing documents

$scope.converterFromOdataToSelectorForAttachments = function

(data, options, helpers) {

var documents = [];

$.each(data, function (key, value) {

124

Developer Guide

var recordProperty = { DocumentType_Value: '', State_Value: ''

};

if (!!value.Records && value.Records.length > 0) {

recordProperty = value.Records[0];

}

var document = {

id: value.RecordId,

text: recordProperty.Summary,

register: options.register,

icon: helpers._getIcon(options, { DocumentType_Value:

recordProperty.DocumentType_Value, State_Value: recordProp-

erty.State_Value }),

type: (options.register == 'Records' ? recordProp-

erty.DocumentType_Value : ''),

namecode: (options.register == 'Contacts' ? recordProp-

erty.NameCode : ''),

actionregister: (!!options.openItem && !!op-

tions.openItem.actionRegister) ? option-

s.openItem.actionRegister : options.register

}

helpers._protectedDocumentTitleFix(document);

documents.push(document);

});

return documents;

};

Example of item converter for editing actors

$scope.converterFromOdataToSelectorForActors = function (data,

options, helpers) {

var actors = [];

$.each(data, function (key, value) {

125

WorkZone Process 2022.0

var actorPropery = value.NameKey;

var actor =

{

id: actorPropery.ID,

text: actorPropery.Summary,

register: options.register,

icon: helpers._getIcon(options, actorPropery),

type: '',

namecode: actorPropery.NameCode,

actionregister: (!!options.openItem && !!op-

tions.openItem.actionRegister) ? option-

s.openItem.actionRegister : options.register

};

actors.push(actor);

});

return actors;

}

Example of a result converter for editing documents

$scope.updateDocumentsFromAttachmentConverter = function

(data, result, hasChangesDelegate) {

if (!checkforChanges(hasChangesDelegate)) return result;

var documents = [];

$.each(data, function (index, value) {

var document = {

$type: "Scanjour.OData.Client.Lite.WorkZone.Record, Scan-

jour.OData.Client.Lite", TypeName: "Som.Record", Medi-

aResource: null, ID: value.id

}

documents.push(document);

})

126

Developer Guide

var _propertyToUpdateName = 'Documents';

result.Attachments = [_propertyToUpdateName];

result.Properties[_propertyToUpdateName].value = documents;

return result;

};

Where :

l data – changed collection provided by the control.

l Result – the populated template response part.

l hasChangesDelegate – delegate to define if any changes were done. If no changes
were done, then there is no need to save anything (but there can be changes here).

For a description of response populating, see Populating document changes.

Example of a result converter for editing actors

$scope.updateActorsFromSomethingConverter = function (data,

result, hasChangesDelegate) {

if (!checkforChanges(hasChangesDelegate)) return result;

var actors = [];

$.each(data, function (index, value) {

var actor = {

$type: "Scanjour.OData.Client.Lite.WorkZone.Contact, Scan-

jour.OData.Client.Lite", TypeName: "Som.Contact", Medi-

aResource: null, ID: value.id

};

actors.push(actor);

});

result.Actors = actors;

return result

};

For a description of the parameters, see Example of item converter for editing documents.

For explanation about response populating, see Populating actor changes.

127

WorkZone Process 2022.0

Example of result converter for editing actors

$scope.updateActorsFromSomethingConverter = function (data,

result, hasChangesDelegate) {

if (!checkforChanges(hasChangesDelegate)) return result;

var actors = [];

$.each(data, function (index, value) {

var actor = {

$type: "Scanjour.OData.Client.Lite.WorkZone.Contact, Scan-

jour.OData.Client.Lite", TypeName: "Som.Contact", Medi-

aResource: null, ID: value.id

};

actors.push(actor);

});

result.Actors = actors;

return result

};

For a description of the parameters, see Example of item converter for editing documents.

For explanation about response populating, see Populating actor changes.

Wzp:rollbackselector-panel control

This control presents a separated panel with a save and a cancel button which give the
ability to save or cancel changes done with all wzp:rollbackselector controls at the
same time.

The panel is invisible by default, and becomes visible when any changes are done by any
wzp:rollbackselector.

The Cancel button cancels changes in all wzp:rollbackselector controls.

The Save button saves changes in all wzp:rollbackselector controls in one update
request.

128

Developer Guide

Control specification

The control should be placed in div with a css style class definition. The default css class is
edit-panel.

The attribute ng-hide="noCapability('execute','online')" makes the panel vis-
ible only when a smart task has both ‘execute’ and ‘online’ capability at the same time.

Example

<div class="edit-panel" ng-hide="noCapability

('execute','online')">

<wzp:rollbackselector-panel

readonly="noCapability('execute','online')"

labelgroup="CONTROL"

cancel-button-label="CANCEL"

cancel-button-hide="false"

save-button-label="SAVE"

capability="execute"

usertask-response-template-name="Update"

class="newline">

</wzp:rollbackselector-panel>

</div>

Configure expanding/collapsing a wzp:rollbackselector section

Using this html structure and styles, and some javascript+ angular code, a wzp:roll-
backselector can be placed in expand-colapse panel.

HTML

<div class="expand-panel-header" ng-hide="actorEditVisible">

<div class="button-column" ng-click="actorEditSwitch()">

<div></div>

</div>

129

WorkZone Process 2022.0

<div class="wzp-control-labeled body-column">

<label>{{$root.i18n('CONTROL', 'ACTORS')}}</label>

</div>

</div>

<div class="wzp-task-editdocument expand-panel-body" ng-hide-

e="!actorEditVisible">

<div class="button-column" ng-click="actorEditSwitch()">

<div></div>

</div>

<wzp:rollbackselector

* * *

labelgroup="CONTROL"

label="ACTORS">

</wzp:rollbackselector>

</div>

Where

{{$root.i18n('CONTROL', 'ACTORS')}} should be equal to the label group and
label attribute of the wzp:rollbackselector control.

JavaScript + Angular code

You can add new properties in the smart task controller (in angular.module('ui.user-
task').controller('ApproveTaskCtr',) body for switching between expanded and col-
lapsed states of the section:

$scope.actorEditVisible = false;

$scope.actorEditSwitch = function () {

$scope.actorEditVisible = !$scope.actorEditVisible;

}

130

Developer Guide

Response Template population

Response structure

You can save any changes in document or actor collections (or any other changes for smart
tasks) by performing an “Update” process action for smart tasks with a correctly populated
ResponseTemplate.

For this action you must use the ResponceTemplate with the name “Update” form SmartTask
Metadata ResponseTemplates .

The current structure of this ResponseTemplate is (in JSON format) as follows:

{

"$type": "Scanjour.Workflow4.Base.UserTaskUpdateResponse, Scan-

jour.Workflow4.Base, Version=4.1.0.0, Culture=neutral,

PublicKeyToken=null",

"NearDueDate": "\/Date(-62135596800000)\/",

"DueDate": "\/Date(-62135596800000)\/",

"Attachments": null,

"Actors": null,

"OptionalActors": null,

"Action": null,

"Comment": null,

"Properties": {

"$type": "Scanjour.Workflow4.Base.UserTaskProperties, Scan-

jour.Workflow4.Base, Version=4.1.0.0, Culture=neutral,

PublicKeyToken=null",

"Documents": {

"$type": "Scanjour.Workflow4.Base.UserTaskProperty, Scan-

jour.Workflow4.Base, Version=4.1.0.0, Culture=neutral,

PublicKeyToken=null",

"key": "Documents",

"type": "Scanjour.OData.Client.Lite.WorkZone.Record[]",

131

WorkZone Process 2022.0

"value": [

{

"$type": "Scanjour.OData.Client.Lite.WorkZone.Record, Scan-

jour.OData.Client.Lite, Version=4.1.0.0, Culture=neutral,

PublicKeyToken=null",

"TypeName": "Som.Record",

"MediaResource": null,

"ID": "7",

"Actions": [],

"Properties": [{ "$type": "Scan-

jour.OData.Client.Lite.PropertyMember, Scan-

jour.OData.Client.Lite, Version=4.1.0.0, Culture=neutral,

PublicKeyToken=null", "key": "ID", "type": "System.String",

"value": "7" }],

"SubEntries": [],

"Feeds": []

}

]

},

"FileNo": {},

"Officer": {},

"OfficerName": {},

"Register": {},

"RegisterKey": { },

"InstanceId": { },

"TaskId": { }

},

"Answers": null,

"Identity": null

}

132

Developer Guide

Populating actor changes

To save changes in the actor list, you must save the new collection of changed items in the
Actors (or OptionalActors) property of the responseTemplate object.

These collections have the type Som.Contact[], so an element of an array must be in the
following format (in JSON):

{

$type: "Scanjour.OData.Client.Lite.WorkZone.Contact, Scan-

jour.OData.Client.Lite", TypeName: "Som.Contact",

MediaResource: null,

ID:id

};

Where id is the ID of a contact from the wzp:rollbackselector items.

Populating document changes

To save changes in the document list, you must save the new collection of changed items
using this sequence of actions:

1. Save the name of the collection with changed values from the Properties col-
lections as an array of a string:

Attachments = [“Documents”];

2. From an array with new items of the type Som.Record in the following format,
enter:

{

$type: "Scanjour.OData.Client.Lite.WorkZone.Record,

Scanjour.OData.Client.Lite", TypeName: "Som.Record",

MediaResource: null,

ID: id

},

Where id is the ID of Record from wzp:rollbackselector items.

3. Save this array in Properties[“Documents”].value.

133

WorkZone Process 2022.0

Add a filter control in The <wzp-multi-selector> and <wzp:rollbackselector>
parent controls

To add a filter control in the <wzp-multi-selector> and <wzp:roll-
backselector> parent controls, follow these steps:

1. Add or modify the <wzp-multi-selector> and <wzp:roll-
backselector> controls (“parent” selector):

a. Change the ng-controller value to
"wzpSelectODATAWithFilterCtrl".

b. Add the css class “wzp-select-with-filter” for correct styl-
ing.

c. Add the attribute wzp-ad-selector-filter-variable, that
should contain a variable equal to the "ng-model" attribute in the
nested <wzp:document-selector-filter> control.

2. Add the <wzp:document-selector-filter> control inside the parent
selector with "ng-model" attribute equal to the 'wzp-ad-selector-fil-
ter-variable' attribute of the parent <wzp-multi-selector> and
<wzp:rollbackselector> and contains '.'.

3. Define the <twoWayBindings> object in scope of the controller of the form.

$scope.twoWayBindings = {};

Form localization

Form Localization Concept for localization <body ui-Intl="js/init.Submission."> PO File
format. POEDITOR phantomJS.. Settings ->

134

Developer Guide

Configuring POEditor to work with WZP forms localization resources

1. Download and install POEditor (http://poedit.net/).

2. Open File > Preferences > Parsers.

3. Add new parser with the following settings:

Language <ParserName> (ex. Workzone Client)

List of extensions separated
by semicolons

*.txt, *.html, *.js

Parser command
xgettext --language=Python --force-po -o %o %C %K %F --
add-comments=Reference

An item in keywords list -k%k

An item in input files list %f

Source code charset --from-code=%c

135

http://poedit.net/

WorkZone Process 2022.0

Add or remove new string key in localization resources

1. Check out the read-only flag from the *.terms.txt resource and *.po files.

2. Add a new string in the format _("KEYGROUP", "STRINGKEY") in the
source file *.terms.txt.

3. Open each po file in POEditor.

4. Click Update.

5. Check your changes in the update summary and click OK.

6. Add the localized string value for the new key value.

7. Save your changes.

136

Developer Guide

Processes overview

Filtering

The WorkZone Process 4.0 overview has the following filters:

WorkZone Process

Domain Restriction filters

The filters are known under three different names:

l "Predefined filters" in WorkZone Client

l "Domain restrictions" in oData

l "Domain" in SOM

In the UI, the list of the domain restriction filters is accessible from Lists in context menu. The
list of filters is dynamic, meaning its content is based on data from the content server, and it is
populated when the overview is started.

In case you need a new domain restriction filter, you must add a new domain to the wzp_
workflow_instance register. You must refresh the overview to view the new filter.

In WorkZone Process 2014, only 6 domain restriction filters are available:

l workflows_running – Active processes

l workflows_closed – Closed processes

l workflows_own_by_me – My processes

l workflows_own_by_my_ou – My unit`s processes

l workflows_pending_my_action – Processes pending me

l workflows_deadline_exceeded – Processes with exceeded deadline

In order to open the overview with one of the filters applied, add the filter url parameter
and use one of the filters described above and prefix it with fixed_ as a value.

http://DSN/Process/Overview?filter=fixed_workflows_own_by_me

137

WorkZone Process 2022.0

Register filter

The filter forces the overview to show all processes (running, closed, and cancelled) star-
ted on a register (File, Record, or Contact). In WorkZone Process 2014, only the File
register filter is supported, meaning that only processes started on a specific case can be
shown.

In order to show process started on a case, specify the following two parameters in the over-
view url:

l register – possible values: FILE.

l registerId – possible values: Any case key.

http://DSN/Process/Overview?register=FILE®isterKey=201

Default filter and filter precedence

If nothing is specified in the url parameters, the My processes domain restriction filter is
applied. It is equivalent to calling the overview with the following url parameter: fil-
ter=fixed_workflows_own_by_me.

In the WorkZone Process 2014 implementation of the overview, only one filter can be
applied at a time. If both the domain restriction filter and the register filter are specified in
the url, then the register filter is applied, causing the domain restriction filter to be dis-
regarded.

Filter parameters

You can open the Overview in WorkZone Process with various views depending on the
parameters that you apply in the url.

Note, that only one filter can be used at a time.

The following table provides an overview of the parameters used to create the links in the
WorkZone Process Overview.

Filter Open
WorkZon-
e Pro-

URL para-
meters

Example

138

Developer Guide

cess
Overview

Case Open
with all
pro-
cesses
for a
case.

register +
registerKey
- ID of a
case

http://host/Pro-
cess/Overview/?register=FILE®isterKey=321

Process Open for
a specific
process.
The pro-
cess
node is
expan-
ded.

processID -
iden-
tification of
a process

http://host/Process/Overview/?processID=ebbd337e-
69a4-42f8-868c-c1d2e112eef8

Task Open for
a specific
user task.

smartTaskI-
d - ID of a
user task

http://host/Process/Overview/?smartTaskID=182

Over-
view list

Open
with a
selected
item from
the Lists
context
menu in
the over-
view.

filter - a list
of all val-
ues for a
parameter
can be
obtained
by request

http://host/Process/Overview?filter=fixed_a_shared_
workflows_4_closed (closed processes)

or

http://host/Process/Overview?filter=fixed_a_shared_
workflows_2_own_by_me" (my processes)

139

WorkZone Process 2022.0

SmartPost

Create a SmartPost dispatcher

You can create a customized SmartPost dispatcher that allows you to send documents
through a new channel. This is useful if the current channels are not sufficient, or if the cus-
tomer has a custom system for sending messages or a proxy/gateway that routes traffic to
e-Boks or Strålfors.

This topic describes how to develop a custom dispatcher using the SDK that is part of any
WorkZone process installation. The SDK is located in the SDK subfolder in Process install-
ation folder. The default location is: C:\Program Files (x86)\KMD\WorkZone\Pro-

cess\SDK\SDK.zip.

To assist you in developing a custom dispatcher, you can use a sample dispatcher, which
is included in the SDK. The sample dispatcher uses an Exchange server to send doc-
uments if the recipient has a legal email address. The sample dispatcher is located in the
SDK\exampleprojects\ExchangeDispatcher folder.

You develop dispatcher as a .NET framework application preferably using the C# lan-
guage. You can build the sample project using Microsoft Visual Studio 2017 or 2019.

Compile and install the sample dispatcher

Prerequisite: The steps in these instructions must be performed by an AD domain
user who is created as a WorkZone user and has been assigned the
PROCESSADM access code.

You compile the dispatcher in Visual Studio by opening the project named Workzone.Dis-
patcher.Exchange.csproj.

When you have compiled the sample project, you can find a WorkZone Process package
named ExchangeDispatcher.wzp in the output folder, for example in bin\debug.

140

Developer Guide

Load the package

Use the package loader to load the package in to WorkZone.

After loading a package, you need to recycle the WzpSv capplication pool.

Restart-WebAppPool WzpSvc

See Configure packages.

Upgrade configuration

The configuration for the dispatcher is created by calling the method UpgradeConfiguration
on the process package service:

http://<database>/process/package.svc/UpgradeConfiguration

You can use a browser or PowerShell:

The return value (5 in the example) corresponds to the number of dispatchers that are
upgraded. If the number is less than zero, it indicates an error. You can find the description of
the error in the application event log with source Scanjour Workflow Host.

141

WorkZone Process 2022.0

Configure the dispatcher

After successful installation and upgrade, you can configure the new dispatcher in
WorkZone Configurator:

The sample dispatcher uses the same Exchange library as the rest of SmartPost.

See also Configure dispatchers in the WorkZone Process Administrator Guide.

Test the sample dispatcher

If you want to test the sample dispatcher in practice, it is important to configure the dis-
patcher to be able to send emails and then you must provide an encrypted password.

Note: If the user that is configured for sending smartmails is reused, then the encryp-
ted password string can be found in the configuration file for the Scan-
jour.Process.MailAgent.dll.config in the c:\program files

(x86)\kmd\workzone\process\bin folder.

142

https://docs.workzone.kmd.net/2022_0/en-us/Content/WZP_AdminGuide/SmartPost/SmartPost_Configure_Dispatchers.htm

Developer Guide

Add the sample dispatcher to a dispatch sequence

To use the sample dispatcher for sending documents, it must be part of a dispatch sequence.

In this example, a new dispatcher sequence named mail is created. It only contains the
sample dispatcher.

See also Configure dispatch sequences in the WorkZone Process Administrator Guide.

Use the sample dispatcher

When the dispatcher sequence has been defined, it is possible to start a SmartPost process
using the dispatcher sequence, in this example named mail:

143

https://docs.workzone.kmd.net/2022_0/en-us/Content/WZP_AdminGuide/SmartPost/SmartPost_Configure_Dispatch_Sequences.htm

WorkZone Process 2022.0

Test the sample dispatcher

If you want to test the sample dispatcher in practice, it is important that you configure the
dispatcher to send emails and then you must provide an encrypted password.

Note: If the user that is configured for sending smartmails is reused, then the encryp-
ted password string can be found in the configuration file for the Scan-
jour.Process.MailAgent.dll.config in the c:\program files

(x86)\kmd\workzone\process\bin folder.

SmartPost dispatcher classes, interfaces, and attributes

The implementation of a dispatcher requires developing classes that implement specific
interfaces and export attributes that enable them to be discovered by the dispatcher frame-
work.

144

Developer Guide

The Workzone.Dispatcher.Base.dll assembly contains the definition of the interfaces and all
helper classes that the interfaces need.

The .NET Framework assembly System.ComponentModel.Composition.dll contains the
attribute class used for export. These assemblies must be referenced from the Visual Studio
project that builds the new dispatcher.

The class diagram below shows classes and interfaces that must be implemented in a dis-
patcher:

Implement IDigitalPost interface

The main interface in a dispatcher is IDigitalPost interface. Implementing this interface
describes the version and unique ID of the dispatcher.

Properties

Name Description Example value

DispatcherGuid A GUID that identifies the dispatcher. 6fbb4267-2edd-
495a-ae55-
1075743b9286

DispatcherId A property that can hold the ID of the dispatcher. The
value of this property is normally not used or provided
by the dispatcher.

DispatchVersion A version string that matches the latest version of 20.0.0.0

145

WorkZone Process 2022.0

Name Description Example value

WorkZone Process.

For the class that implements this interface to be discovered by the dispatcher framework, it
is required to add an Export attribute to the class that exports the IDigitalPost type (use Sys-
tem.ComponentModel.Composition.ExportAttribute).

Implement IDigitalPostSenderConfigurator interface

The IDigitalPostSenderConfigurator interface only has one method that returns an ini-
tialized class that implements IDigitalPostSender.

Methods

Name Description

ConfigureSender Returns an instance of a class that implements IDigitalPostSender.
Normally, this method reads the settings and passes values to the
sender class in the constructor. The parameters for this method are:

l oDataService handle that can be used for accessing the data-
base.

l AccessCode (not used).

l Extra parameters applied to the SmartPost workflow at start-up.

For the class that implements this interface to be discovered by the dispatcher framework it
is required to add an Export attribute to the class exporting the IDi-
gitalPostSenderConfigurator type.

146

Developer Guide

Example

In the Exchange dispatcher example, the SenderConfigurator class both implements IDi-
gialPost and IDigitalPostSenderConfigurator. The ConfigureSender method reads the set-
tings into a dictionary and passes this dictionary to the constructor of the ConfiureSender
class (this class implements IDigtalPostSender) together with the oDataService.

Implement IDigitalPostSender interface

The class that implements IDigitalPostSender is the class that has the logic for dispatching
messages and validating the dispatcher configuration as well as the dispatches before dis-
patching to a specific recipient.

Methods

Name Description

SendMessage Sends a message to a recipient. A prebuilt message is handed
over to the method but it is also possible to use other data about
the recipient, case, or document using the keys supplied in the
arguments. The oDataService supplied in the Digit-
alPostSenderConfigurator::ConfigureService can be used for
querying the WorkZone database.

The arguments for the method are:

l message—the message that has been built for dis-

147

WorkZone Process 2022.0

Name Description

patching.

l recipientAddress—a postal address built from the
address data in WorkZone.

l fileKey—the file key that the workflow has been started
from.

l recordKey—the record key that contains the letter to be
sent.

l addressKey—the address key of the recipient.

l parameters—extra parameters supplied to the
SmartPost process at start-up.

The method must return an instance of a class that implements
the IMessageShipmentHandle interface. This value can be
used by the dispatcher framework to query for the state of the
dispatch using the GetMessageShipmentState method.

GetMessageShipmentState Returns the state of the message from the dispatcher client.

l handle is a dispatch handle formerly returned from
SendMessage.

The return value is an instance of a class that implements the
IMessageShipmentState interface.

CanSend Validates if the dispatcher is able to send messages using the
current configuration. For example, if the dispatcher needs a net-
work connection to send a message, this method will validate
that the connection is successful. This method is called before
the SmartPost process is started to prevent starting a SmartPost
process that is not able to send messages. The return value is
ValidationResult that contains a set of errors.

CanDispatchToUser Validates if it is possible to send a document (record) to a spe-
cific user. The arguments are:

l recordIds of the documents that are planned to be sent.

148

Developer Guide

Name Description

l addressKey of the recipient.

l accessCode (not used).

l customParameters of the SmartPost process.

Return value is a ValidationResult that contains a set of errors.

Properties

Name Description Type

SenderAddress The dispatcher framework adds the SenderAddress to
the message object that is passed to SendMessage.

PartyAddress
including postal
address.

Exception handling

If an exception is thrown during the dispatch, the dispatcher framework resolves the action to
take by comparing the exception with the values in the wzp_filtering_entry table. If a match-
ing entry is found, the row in wzp_error_manager determines how to act on the error. Poss-
ible actions are:

l TryNextSource—It is not possible to send to this user. If there is another dispatcher in
the current dispatcher sequence, it should be used instead.

l NotifyUserAndAbort—The dispatch failed and it should not be sent using another dis-
patcher.

l Retry—A temporary communication error occurred. Retry is done after a delay (the
number of retries and the delay is also specified in the table).

Implement IMessageShipmentHandle interface

This interface is used by the framework to keep track of messages that have been sent.

149

WorkZone Process 2022.0

Properties

Name Description Type

MessageId A message ID used to identify the message. String

Implement IMessageShipmentState interface

The IMessageShipmentState interface is used to get the state of a message that has been
sent. It is assumed that the dispatcher implementation can retrieve information about the
progress of the dispatch to the recipient.

Properties

Name Description Type

ProcessState The current state of the dispatch. MessageShipmentProcessState

Text A description of the state that can be used
in logs and reports.

String

Use of ValidationResult class

The ValidationResult class is used as return values on the CanDispatchToUser and
CanSend methods on the IDigitalPostSender. The methods and properties on the class
cannot be overridden.

The errors added to a ValidationResult are localized in the database. To create an error
message that can be displayed to the user, the code must be added to wzp_error_mes-
sage and localized versions of the message must be added to wzp_error_message_lang.

Properties

Name Description Type

IsValid Used by the dispatcher framework to determine if
the result is OK. If no errors are added, the result is

Bool

150

Developer Guide

Name Description Type

regarded as valid.

IsFatal If this property is true, the dispatch will fail even if
the dispatch sequence includes another dis-
patcher.

Bool

Errors The list of errors that prevents the dispatcher from
sending the message.

IEnumerable<MessageEntry>

Methods

Name Description

Add (ValidationResult) Merges a validation result into the current instance.

Add (errorCode,-
parameters)

Used to add a new error message to the list of errors.

l errorCode—An enum value from any enumeration. This
value must exist in the WorkZone database in the wzp_
user_message table (in uppercase).

l parameters—An array of values that can be merged into the
localized message.

Example of definition and use of error message

The exchange example dispatcher has defined an enumeration of errors called Cus-
tomInfoEnum.

The SQL script messages.sql inserts the values in wzp_user_message and wzp_user_
message_lang. This is the part of the script where NoEmailAddress is defined:

151

WorkZone Process 2022.0

Note that the error message contains a ‘{0}’ that indicates where the ID of the recipient
is placed.

In the CanDispatchToUser method, it is validated if the user has an email address – oth-
erwise the error message is added.

Implement DigitalPostDispatcherConfigurator class

If the dispatcher has settings that a user should be able to maintain in the WorkZone Con-
figurator, you must create a DigitalPostDispatcherConfigurator class in the dispatcher.
This class does not implement a specific interface but must expose these 4 properties:

Properties

Name Description Type

Id The GUID of the dispatcher. String

Name The Name of the dispatcher. String

Version The version number string of the
dispatcher

String

Parameters The parameters that can be con-
figured for the dispatcher. Para-
meters is an enumeration of
tuples of 5 values that describes
each configuration parameter:

IEnumerable<

Tuple<string,bool,string,string,string,string>

>

152

Developer Guide

Name Description Type

1. Name of the setting
(string)

2. Is the setting
required (bool)

3. Type of the setting
value(string)

4. Default value (string)

5. Description (string)

The description is shown when
you hover the mouse over the
question mark in the WorkZone
Configurator.

The DigitalPostDispatcherConfigurator class is recognized by the dispatcher framework in a
slightly different way than the other dispatcher classes. It must Export a string (not a type) with
the value “DigitalPostDispatcherConfigurator”.

The sample Exchange dispatcher has 6 settings that are declared as shown below.

153

WorkZone Process 2022.0

The SenderConfigurator class (that implements IDigitalPostSenderConfigurator) reads
the setting values by calling DispatcherUtility.GetSetting(oDataService,
enumValue.ToString(), dispatcherId) using an extension method.

Deploy a SmartPost dispatcher

You deploy the dispatcher by creating a WorkZone package that contains the dispatcher
assembly and a package.xml file that describes the package.

The example exchange dispatcher has a package.xml as a project file:

This build target in the project file copies the binaries and the package, and zips the result
into ExchangeDispatcer.wzp:

Configure SmartPost PartyIdentifierSources

SmartPost uses PartyIdentifierSources instance to look up sender information such as
CVR or CPR numbers.

This topic describes the implementation and function of the PartyIdentifierSources
instance and how you can customize the configuration and/or extend it.

154

Developer Guide

Design

The diagram below shows the core types which constitute the design of the Party Iden-
tifierSources. The design complies with the factory design pattern.

Factory pattern implementation

IPartyIdentifierSource is the interface that exposes the specific implementation of a Party
Identifier Source instance. The method GetPartyIdentifier will be called by the application,
when a party identifier (CPR or CVR number) is to be retrieved from a contact identifier (con-
tactID). The OData service context is provided as a parameter to support database access in
the implementation.

ODataPartyIdentifierSource is a concrete implementation of the IPartyIdentifierSource inter-
face. See ODataPartyIdentifierSource for more details.

The PartyIdentifierSourceFactory can create instances, which implement the IPartyIden-
tifierSource interface. The actual construction is done through a configuration, which is
described in Configuration of the GetPartyIdentifier method. The configuration is provided to
the factory as an XML element.

Utility method(GetPartyIdentifier)

The application requests that the factory provides a Party Identifier Source, which the applic-
ation can then use to retrieve the party identifier from a contact identifier. The party identifier is
retrieved in various ways depending on the name type of it. It is therefore useful to have one
Party Identifier Source instance per name type that can provide a party identifier.

All this is contained in the static GetPartyIdentifier(string, ODataService)method in the Iden-
tifierSourceUtilities class. Figure 2 shows an example of how this method can be used.

155

WorkZone Process 2022.0

Use of the GetPartyIdentifier method in the IdentifierSourceUtilities
class

Configuration of the GetPartyIdentifier method

The method is configured by the XML specified in the Process settings in WorkZone Con-
figuration Management (Operation > Process Settings) or in the WZP_SETTING entity
named PartyIdentifierSources (the module name is “WorkZone”). This XML is read and
interpreted by the GetPartyIdentifier method. See Utility method(GetPartyIdentifier).

156

Developer Guide

The standard configuration

The XML is interpreted as described below.

The following applies to the entire XML:

l No namespaces are considered.

l No schema is specified since the XML details depends on the implementations of the
Party Identifier Sources.

For the root element, the following rules applies:

l The name of the root element is not important.

l All attributes on the root element are ignored.

The child elements of the root element are searched for the element with an attribute named
name-type and which value matches the string parameter to the GetPartyIdentifier method. If
no such match was found, then the method returns null. Otherwise the found child element is
parsed to the factory, which now is responsible of creating a Party Identifier Source for that
name type based on the XML element.

157

WorkZone Process 2022.0

Configuration of a factory

As mentioned above, the XML element (configuration element) that matches the requested
name type is parsed to the factory, in order to make it produce a Party Identifier Instance.
The factory does this by reading the class attribute from the configuration element. The
value of the class attribute must be the fully qualified class name of the requested Party
Identifier Source implementation and the class must implement the interface of the
IPartyIdentifierSource.

The factory then searches the class for a constructor, which matches one of the following
signatures:

l ctor(ODataService, XElement)

l ctor(XElement, ODataService)

l ctor(XElement)

l ctor(ODataService)

l ctor()

Where ODataService (FQCN = Scanjour.Process.OData.Client.Proxy.ODataService) is an
OData access to the database and XElement (FQCN = System.Xml.Linq.XElement) is the
XML element found by the factory.

The search is performed in the order shown above. Whenever a constructor is found, the
parameters are provided and the constructor is called, so the Party Identifier Source
instance is created and eventually returned by the factory.

The ODataService makes it possible for the Party Identifier Source constructor to search
for additional information in the database.

The XElement can be used to retrieve implementation-specific configuration to the con-
structor.

ODataPartyIdentifierSource

The ODataPartyIdentifierSource class is a general-purpose implementation of the
IPartyIdentifierSource interface.

The ODataPartyIdentifierSource can access any register in the database that is made
available through OData. The register, the query, and where the value for the Party Iden-
tifier are described below.

158

Developer Guide

Configuration

The ODataPartyIdentifierSource is configured by the XML element, which is provided by the
factory.

A configuration example of the ODataPartyIdentifierSource

The attributes on the party-identifier-source are not used by the class, but have already been
used by the factory. The XML element works more like a placeholder for the three inner XML
elements.

It is the three inner XML elements, which configure the ODataPartyIdentifierSource.

register-
name

The name of the register on which the OData query will take offset.

query-
template

The template which is used to form the query. When the GetPartyIdentifier(string,
ODataService) method is invoked, then two empty curled braces ({}) will be
replaced by the contact identifier, which is the first parameter in the method.

field-
name

The name of the field in the result which content will be returned by the method.
The field is expected to contain the code of the Party Identifier. E.g. NameCode.

The final OData query will be formed in the following way:

{base-uri}{register-name}{partial-query}

Where

{base-uri} is the URI to the data source – for example, http://db01/OData/

{register-name} - The content of the register-name element, for example Contacts.

{partial-query} - The content of the query-template element after the curled braces has
been replaced by the name key. For example a query template can be:

?$filter=ID eq '{}'&$select=NameCode,NameType_Value

Remember that & in XML must be written as & - see example above.

If the name key is 36, the {partial-query} will then be:

159

WorkZone Process 2022.0

?$filter=ID eq '36'&$select=NameCode,NameType_Value

Based on the above examples the final query will be:

http://db01/OData?$filter=ID eq

'36'&$select=NameCode,NameType_Value

From the result of the query, the NameCode of the first entity will be used as Party Iden-
tifier.

Customized implementation

If the provided ODataPartyIdentifierSource is insufficient for making a customization, then
a customized implementation will probably solve it.

To do so, you must make an assembly containing your customized Party Identifier Source.
Add the assembly to the WorkZone Process package, and change the configuration in
WZP_SETTINGS, so your class is used by the factory to create your Party Identifier
Source.

Follow these steps:

1. Create a Class Library project for the purpose. Beware of dependencies to
other projects.

2. Make the project reference the WorkZone.Dispatcher.Base assembly.

3. In your project, create a file containing an empty class.

4. Make your file use the WorkZone.Dispatcher.Base namespace.

5. Make the class implement the IPartyIdentifierSource interface.

6. Make a constructor to the class, that complies to one of the constructors
described in Configuration of a factory.

7. If required, then use the constructor to retrieve configuration information from
the XML element or directly from the database using the ODataSerivice
provided.

8. Implement the GetPartyIdentifier method, so it complies with the interface.

9. Write some tests that verifies your implementation.

10. Compile and include your assembly in the WorkZone Process package.

11. Change the configuration in WorkZone Configuration Management or WZP_
SETTINGS so that your new Party Identifier Source is used by the correct

160

Developer Guide

name type(s) and to make the constructor receive the correct XML element (if
required).

12. Use Visual Studio to generate a new assembly with an updated set of proxy
classes. The content of the new assembly must take offset in your customized
data dictionary.

13. Make your installation substitute the existing assembly with the newly generated
assembly. Do this by copying the new assembly to “C:\Program Files
(x86)\KMD\WorkZone\Process\Web\Services\Bin"

14. Make an IISRESET.

15. Test your creation.

Configure SmartPost ContactAddressSources

SmartPost uses a Contact Address Sources instance when a message is received from e-
Boks, and the sender must be associated with the document (record) that is created at receipt
of the SmartPost message. The connection between the message and the sender is made
through addresses. The Contact Address Sources instance and its configuration point out the
addresses that identify the sender and associate the sender with the document.

This topic describes the implementation and function of the

Contact Address Sources instance and how to customize it by configuring or extending it.

Design

The diagram shows the core types which constitute the design of the Contact Address
Source instance. The design complies to the factory design pattern.

161

WorkZone Process 2022.0

Factory pattern implementation

IContactAddressSource is the interface that exposes the specific implementation of a
Contact Address Source instance. The GetContactAddressKeys method will be called by
the application, when a set of keys for addresses of the contacts is to be retrieved from a
party identifier (CVR or CPR numbers). The OData service context is provided as a para-
meter to support the database access from the implementation.

ODataContactAddressSource is a concrete implementation of the IContactAd-
dressSource interface. See class="information_block"> ODataContactAddressSource for
more details.

The ContactAddressSourceFactory can create instances, which implement the
IContactAddressSource interface. The actual construction is done according to a con-
figuration, which is described in Configuration of the GetContactAddressKeys method.
The configuration is provided to the factory as an XML element.

Utility method (GetContactAddressKeys)

The application can ask the factory to provide a Contact Address Source instance, and
then the application can use the Contact Address Source instance to retrieve the address
keys that are related to a party identifier. The way contact addresses are retrieved varies
depending on the party identifier type, for example CVR or CPR, and there it is useful to
have at least one set of Contact Address Source instances per party identifier type where
each can provide a set of address keys.

All this is contained in the static GetContactAddressKeys(PartyIdentifier, ODataService)
method in the IdentifierSourceUtilities class.

Use of the GetContactAddressKeys method in the IdentifierSourceUtilities class

162

Developer Guide

Configuration of the GetContactAddressKeys method

The method is configured by the XML specified in the Process settings in WorkZone Con-
figuration Management (Operation > Process Settings) or in the WZP_SETTING entity
named ContactAddressKeySources (the module name is “WorkZone”). This configuration is
XML that is read and interpreted by the GetContactAddressKeys method, see Utility method
(GetContactAddressKeys).

Example: The standard configuration of the factory

The XML is interpreted as described below.

The following applies to the entire XML:

l No name spaces are considered.

l No schema is specified because the XML details are up to the actual imple-
mentations of the Contact Address Sources instance.

For the root element, the following rules applies:

l The name of the root element is not important.

l All attributes on the root element are ignored.

When the GetContactAddressKeys method is invoked, the XML is interpreted and the
method is executed in the following way:

163

WorkZone Process 2022.0

1. Selection of child elements

The child elements of the root element are searched for the element having
an attribute named party-identifier-type, which is compared to identifier type
(CVR or CPR) of the provided party identifier. The comparing is case insens-
itive. If the content of the party-identifier-type attribute matches the provided
party identifier, then the child element is accepted. All other child elements
are ignored.

2. Creation of Contact Address Sources instance

For each of the accepted child elements a Contact Address Source
instance is created. See Configuration of a factory.

3. Invocation of created Contact Address Sources instance

When the instance has been created, the GetContactAddressKeys method
is invoked, which returns a set of address keys. The set of address keys
depends in the implementation.

4. Collection of address keys

Because several Contact Address Source instances can be created and
invoked in the same call to the GetContactAddressKeys method in the Iden-
tifierSourceUtilities class, several non-empty sets of address keys can be
returned. The GetContactAddressKeys method collects the address keys
contained in these sets in a Sys-
tem.Generic.Collections.HashSet<string>. In this way, it is
ensured that the same address keys remain unique.

5. The final result

Finally, the GetContactAddressKeys method returns an enumeration of the
collected address keys.

Configuration of a factory

As mentioned in section 2.3, the XML element (configuration element) that matches the
requested party type is parsed to the factory, to make it produce a Contact Address Source
instance. The factory does that by reading the class attribute from the configuration ele-
ment. The value of the class attribute must be the fully qualified class name of the

164

Developer Guide

requested Contact Address Source implementation, and the class must implement the
IContactAddressSource interface.

The factory then searches the class for a constructor, which matches one of the following sig-
natures:

l ctor(ODataService, XElement)

l ctor(XElement, ODataService)

l ctor(XElement)

l ctor(ODataService)

l ctor()

Where ODataService (FQCN = Scan-

jour.Process.OData.Client.Proxy.ODataService) is an OData access to the
database and XElement (FQCN = System.Xml.Linq.XElement) is the XML element
found by the factory.

The search is done in the shown order. Whenever a constructor is found, the parameters are
provided and the constructor is called, so that the Contact Address Source instance is cre-
ated and eventually returned by the factory.

The ODataService makes it possible for the Contact Address Source constructor to search
additional information in the database.

The XElement can be used to retrieve implementation specific configuration to the con-
structor.

class="information_block"> ODataContactAddressSource

The ODataContactAddressSource class is a general-purpose implementation of the
IContactAddressSource interface.

The ODataContactAddressSource can access any register in the database that is made avail-
able through OData. The register, the query, and where the address keys values are located,
are described below.

Configuration

The ODataContactAddressSource is configured by the XML element, which is provided by
the factory. An example of an XML element for the ODataContactAddressSource.

165

WorkZone Process 2022.0

A configuration example of the ODataContactAddressSource

The attributes on the contact-address-source are not used by the class, but have already
been used by the factory. The XML element works more like a placeholder for the three
inner XML elements.

It is the three inner XML elements, which configure the ODataContactAddressSource.

register-
name

The name of the register on which the OData query will take offset.

query-
template

The template that is used to form the query. When the GetContactAddressKeys
(PartyIdentifier, ODataService) method is invoked, then two empty curled
braces ({}) will be replaced by the party identifier code, such as the actual CVR
or CPR number, which is the first parameter to the method.

field-
name

The name of the field on the result, which content will be returned by the
method. The field is expected to contain the address keys of the address entity,
which is connected to the provided party identifier, for example ID.

The final OData query will be formed in the following way:

{base-uri}{register-name}{partial-query}

Where

{base-uri} is the URI to the data source – for example http://db01/OData/

{register-name} - The content of the register-name element, for example Addresses.

{partial-query} - The content of the query-template element after the curled braces
has been replaced by the name key. For example, a query template can be:

?$filter=Name/NameCode eq '{}'&$select=ID

(Remember that & in XML must be written as & - see Figure 4 for an example.)

If the party identifier code is ‘180582-3042’ then the {partial-query} will then be:

?$filter=Name/NameCode eq '180582-3042'&$select=ID

Taken the above examples the final query will be:

166

Developer Guide

http://db01/OData?$filter=Name/NameCode eq '180582-

3042'&$select=ID

From the result of the query, the ID of all the returned entities will be collected.

Customized implementation

If the provided ODataContactAddressSource is insufficient for making a specific cus-
tomization, then a customized implementation will probably solve it.

To do so you must make an assembly containing your customized Contact Address Source.
Add the assembly to the WorkZone Process package and change the configuration in WZP_
SETTINGS, so that your class is used by the factory to create your Contact Address Source
instance.

Follow these steps:

1. Create a Class Library project for the purpose. Beware of dependencies to other
projects.

2. Make the project reference the WorkZone.Dispatcher.Base assembly.

3. In your project create a file containing an empty class.

4. Make your file use the WorkZone.Dispatcher.Base namespace.

5. Make the class implement the IContactAddressSource-interface.

6. Make a constructor to class that complies to one of the constructors described in
Configuration of a factory.

7. If required, then use the constructor to retrieve configuration information from the
XML element or directly from the database using the ODataService provided.

8. Implement the GetContactAddressKeys method, so it complies to the interface.

9. Write tests that verifies your implementation.

10. Compile and include your assembly in the WorkZone Process package.

11. Change the configuration in WorkZone Configuration Management or WZP_
SETTINGS so your new Contact Address Source is used by the correct party
identifier type and so the constructor receives the correct XML element (if
required).

12. Use Visual Studio to generate a new assembly with an updated set of proxy
classes. The content of the new assembly must take offset in your customized
data dictionary.

167

WorkZone Process 2022.0

13. Make your installation substitute the existing assembly with the newly gen-
erated assembly. Do this by copying the new assembly to “C:\Program Files
(x86)\KMD\WorkZone\Process\Web\Services\Bin"

14. Make an IISRESET.

15. Test your creation.

168

Developer Guide

Integration

Start a SmartPost process using a script

You can start a SmartPost process by calling the Process service and posting arguments in
JSON format. You can use the following parameters:

Name Description Example

Cred Credentials of the WorkZone used to invoke
the request. If is not supplied, the user is
prompted for credentials.

WzUrl The main URL to WorkZone. http://db01

WzODataUrl The sub URL to the OData site under
WorkZone The default value is 'OData'.

'OData'

FileKey The FileKey of the case to run the SmartPost
from

932835

Title The title of the SmartPost process started,
This is the title shown in the Processes over-
view. If the title is not supplied, the title of the
document is used.

DefinitionId The unique ID (GUID) of the SmartPost pro-
cess to use. The default value is '23b9498e-
bca5-4746-98a0-71e03cd6963c'.

Description Optional argument. Used to supply a descrip-
tion for the SmartPost process.

Deadline If a SmartPost message is sent for preview
or approval, a deadline can be set. If the
deadline for the preview or approval is
exceeded, a reminder is sent to the pre-
viewer or approver. This argument defines
the deadline. The default value is 'tomorrow'.

169

WorkZone Process 2022.0

Name Description Example

Subject The subject is the title of the message that is
handed over to the dispatcher. When send-
ing to e-Boks, the subject is the title of the
message shown to the end user. If the sub-
ject argument is not supplied the Title will be
used.

RecordID The RecordID of the document to send. The
argument is mandatory.

AttachmentRecordIds Contains the recordid's of the attachments.
The attached documents must exist in the
WorkZone database.

IsApproval Switch parameter. This argument indicates
that the dispatch will be forwarded to the
case handler for approval. IsApproval
and IsPreview are mutually exclusive so
only one of them or none of them can be
true.

IsDeleteOriginal Switch parameter. If supplied, the original
document is deleted after dispatch is done.

Ispreview Switch parameter. This argument indicates
that the messege is sent to the process
owner for preview before the dispatch con-
tinues. IsPreview and IsApproval are
mutually exclusive so only one of them or
none of them can be true.

RecipientAddressKeys Addresskeys of the recipients. At least one
must be specified.

CopyRecipientAddressKeys Addresskeys of the copy recipients.

DispatcherSequenceId The ID of the dispatcher sequence used for
dispathing the document. The argument is
mandatory.

170

Developer Guide

Name Description Example

CloseCase A switch parameter. If supplied, the case will
be closed after dispatch.

OpenCase A switch parameter. If supplied and the case
is closed, it will be opened before starting
the SmartPost process.

CaseState The new state of the case, which is applied
after the dispatch is done. If not supplied, the
state of the case remains unchanged. It must
be a legal value in Custom domain
'SAGTILST'.

Access Sets an access restriction on the SmartPost
process. It must be a legal AccessCode. If
the argument is not supplied, the default
access code configured for the process is
used.

Importance Argument used to set the priority of the
SmartPost process. The possible values are
'1-HIGH', '2-NORMAL' and '3-LOW'. The
Default value is '2-NORMAL'.

CustomDispatcherParameters This parameter can be used for supplying
dispatcher specific parameters as a Hasht-
able.

MaterialId The e-Boks material ID to use for the dis-
patch. The parameter is only used when
using an e-Boks dispatcher and in this case,
the argument is mandatory.

RemotePrintTypeId The PrintTypeID for the dispatch. The para-
meter is only used when using a remote print
dispatcher and in this case, the argument is
mandatory.

171

WorkZone Process 2022.0

Name Description Example

AllowSendingSeparateDocuments Allows sending attachments as separate
PDF documents separately instead of mer-
ging the letter and attachments into one PDF
document.

DefaultSendSeparateDocuments Ensures that sending attachments as sep-
arate PDF documents (see AllowSend-
ingSeparateDocuments) separately is used
by default.

Note: The script allows for future changes in the parameters. The script calls the pro-
cess service, finds allowed parameters, and then merges the parameters that are
input to the script with the allowed parameters. The script will work even if a new non-
mandatory parameter is added to SmartPost.

Example

.\Send-SmartPost.ps1 -WzUrl http://xe -FileKey 221 -Title

"Test title" -RecordId 240 -RecipientAddressKeys 301 -Dis-

patcherSequenceId 70

Below is an sample PowerShell script:

<#

.DESCRIPTION

The 'Send-Smartpost' method is able to initiate a Smartpost

shipment given the internal keys for case, record etc.

An example of a start of a local print shipment. If cre-

dentials are not supplied in the parameter 'Cred', then a login

dialog will be shown.

.\Send-SmartPost.ps1 -FileKey 221 -Title "Test title" -

RecordId 240 -RecipientAddressKeys 301 -DispatcherSequenceId 70

-WzUrl http://db01 -RemotePrintTypeId 1 -MaterialId 1

172

Developer Guide

Ships a document and attchements to one or more recipients by

initiating a SmartPost process.

.SYNOPSIS

This method calls the Process web service and initiates a

SmartPost Workflow using the arguments supplied.

.EXAMPLE

PS C:\wzp\Source\Scanjour.Process.Web> Send-SmartPost -WzUrl

http://db01 -FileKey 221 -Title "Test title" -RecordId 240 -Recip-

ientAddressKeys 301 -DispatcherSequenceId 70

.PARAMETER Cred

Credentials of the workzone user used to invoke the request.

If not supplied user is prompted for credentials.

.PARAMETER WzUrl

The main url to Workzone (e.g. http://db01)

.PARAMETER WzODataUrl

The sub url to the OData site under workzone (e.g. 'OData').

The default value is 'OData'.

.PARAMETER FileKey

The FileKey of the file to run the SmartPost from (e.g. 932835)

.PARAMETER Title

The title of the SmartPost process started (the title presen-

ted in the process overview). If not supplied the title of the doc-

ument.

.PARAMETER DefinitionId

The unique id (GUID) of the SmartPost process to use. Default

value is '23b9498e-bca5-4746-98a0-71e03cd6963c'.

.PARAMETER Description

173

WorkZone Process 2022.0

Optional argument. Used to supply a Description for the

SmartPost process.

.PARAMETER Deadline

If a shipment is sent for preview or approval, a deadline

can be set. If the deadline for the preview or approval is

exceeded, a reminder is sent to the previewer or approver. This

argument defines the deadline. The default value is 'tomorrow'.

.PARAMETER Subject

The subject is the title of the message that is handed over

to the dispatcher. When shipping to e-Boks the Subject is the

title of the message presented to the enduser. If the subect

argument is not supplied the Title will be used.

.PARAMETER RecordID

The RecordID of the document to ship. The argument is man-

datory.

.PARAMETER AttachmentRecordIds

Contains the recordid's of the attachements. The attchement

documents must exist in the Workzone database.

.PARAMETER IsApproval

Switch parameter. This argument indicates that the shipment

will be forwarded to the case handler for approval. IsApproval

and IsPreview are mutually exclusive so only one of them or none

of them can be true.

.PARAMETER IsDeleteOriginal

switch parameter. If supplied then the original document is

deleted after shipment is done.

.PARAMETER Ispreview

Switch parameter. This argument indicates that the shipment

is sent to the process initiator for preview before the shipment

174

Developer Guide

continues. IsPreview and IsApproval are mutually exclusive so only

one of them or none of them can be true

.PARAMETER RecipientAddressKeys

Addresskeys of the recipients. At least one must be specified.

.PARAMETER CopyRecipientAddressKeys

Addresskeys of the copy recipients.

.PARAMETER DispatcherSequenceId

The ID of the Dispatcher sequence used for shipping the doc-

ument. The argument is mandatory.

.PARAMETER CloseCase

A switch parameter. If supplied the case will be closed after

shipment.

.PARAMETER OpenCase

A switch parameter. If supplied and the case is closed, it

will be opened before starting the SmartPost process.

.PARAMETER CaseState

The new state of the case applied after the shipment is done.

If not supplied the state of the case remains unchanged. Must be a

legal value in Custom domain 'SAGTILST'.

.PARAMETER Access

Sets an access restriction on the SmartPost process. Must be a

legal AccessCode. If the argument is not supplied the default

access code configured for the process is used.

.PARAMETER Importance

Argument used to set the priority of the SmartPost process.

The possible values are '1-HIGH', '2-NORMAL' and '3-LOW'. The

Default value is '2-NORMAL'.

175

WorkZone Process 2022.0

.PARAMETER CustomDispatcherParameters

This parameter can be used for supplying dispatcher specific

parameters as a Hashtable.

.PARAMETER MaterialId

The e-Boks materialId to use for the shipment. The parameter

is only used when using an e-Boks dispatcher is used and in this

case the argument is mandatory.

.PARAMETER RemotePrintTypeId

The PrintTypeID for the shipment. The parameter is only used

when using a remote print dispatcher is used and in this case

the argument is mandatory.

.PARAMETER AllowSendingSeparateDocuments

Switch parameter. Sending documents separately over merging

them into one is allowed

.PARAMETER DefaultSendSeparateDocuments

Switch parameter. Sending documents separately over merging

them into one is selected

#>

param(

[PSCredential]$Cred = (Get-Credential -Message "Workzone user

login"),

[parameter(Mandatory = $True)][string]$WzUrl,

[parameter(Mandatory = $True)][string]$FileKey,

[parameter(Mandatory = $True)][string]$Title,

[string]$DefinitionId = "23b9498e-bca5-4746-98a0-

71e03cd6963c",

[string]$Description = $Title,

[DateTime]$Deadline = [DateTime]::Now.AddDays(1),

[string]$Subject = $Title,

[parameter(Mandatory = $True)][string]$RecordId,

[string[]]$AttachmentRecordIds = @(),

176

Developer Guide

[switch]$IsApproval,

[switch]$IsDeleteOriginal,

[switch]$Ispreview,

[string[]]$RecipientAddressKeys,

[string[]]$CopyRecipientAddressKeys,

[string]$DispatcherSequenceId,

[switch]$CloseCase,

[switch]$OpenCase,

[string]$CaseState,

[string]$Access,

[string]$Importance = "2-NORMAL",

[HashTable]$CustomDispatcherParameters = @{},

[string]$MaterialId,

[string]$RemotePrintTypeId,

[switch]$AllowSendingSeparateDocuments,

[switch]$DefaultSendSeparateDocuments

)

Function ConvertTo-HashTable {

param($Object)

if ($null -eq $Object) { return $null }

if ($Object -is [psobject]) {

$result = @{}

$items = $Object | Get-Member -MemberType NoteProperty

foreach ($item in $items) {

$key = $item.Name

$value = ConvertTo-HashTable -Object $object.$key

$result.Add($key, $value)

}

return $result

}

elseif ($object -is [array]) {

$result = [object[]]::new($object.Count)

for ($i = 0; $i -lt $object.Count; $i++) {

$result[$i] = (ConvertTo-HashTable -Object $object[$i])

177

WorkZone Process 2022.0

}

return , $result

}

else {

return $object

}

}

Function Get-DefaultArguments {

param(

[PSCredential]$Cred,

[string]$WzUrl = (Get-ModuleVar -Name "WzUrl"),

[parameter(Mandatory = $True)][string]$DefinitionId

)

[string]$Uri = "$($WzUrl)/Process/Process.svc/Definitions

($($DefinitionId))/StartupInfo"

$Arguments = Invoke-RestMethod -Uri $Uri -Credential $Cred

ConvertTo-HashTable $Arguments

}

Function Start-WzpProcess {

param(

[PSCredential]$Cred,

[string]$WzUrl = (Get-ModuleVar -Name "WzUrl"),

[string]$EntityType = "File",

[DateTime]$Deadline = ([DateTime]::Now.AddDays(1)),

[parameter(Mandatory = $True)][string]$EntityId,

[parameter(Mandatory = $True)][string]$DefinitionId,

[parameter(Mandatory = $True)][string]$Title,

[string]$Description,

[parameter(Mandatory = $True)][HashTable]$Properties,

[string]$Acces,

[string]$Importance,

[string]$ParentId,

[string]$Owner,

[string]$Subject

)

178

Developer Guide

$UniqParam = "1$([System.Random]::new([Dat-

etime]::Now.Millisecond).next(100000000,999999999))"

[string]$Uri = "$($WzUrl)/Pro-

cess/Pro-

cess.s-

vc/Processes/${EntityType}/${EntityId}?uniqparam=${UniqParam}"

$BodyHashTable = Get-DefaultArguments -Cred $Cred -WzUrl $WzUrl

-DefinitionId $DefinitionId

If (![string]::IsNullOrWhiteSpace($Title)) {

$BodyHashTable["Title"] = $Title

}

If (![string]::IsNullOrWhiteSpace($Description)) {

$BodyHashTable["Description"] = $Description

}

$BodyHashTable["Access"] = $Deadline

If (![string]::IsNullOrWhiteSpace($Access)) {

$BodyHashTable["Access"] = $Access

}

If (![string]::IsNullOrWhiteSpace($Importance)) {

$BodyHashTable["Importance"] = $Importance

}

If (![string]::IsNullOrWhiteSpace($ParentId)) {

$BodyHashTable["ParentId"] = $ParentId

}

If (![string]::IsNullOrWhiteSpace($Owner)) {

$BodyHashTable["Owner"] = $Owner

}

If (![string]::IsNullOrWhiteSpace($Subject)) {

$BodyHashTable["Subject"] = $Subject

}

foreach ($PropertyKey in $Properties.Keys) {

if ($null -ne $BodyHashTable["Properties"][$PropertyKey] -and

$null -ne $Properties[$PropertyKey]) {

$BodyHashTable["Properties"][$PropertyKey].Value =

179

WorkZone Process 2022.0

$Properties[$PropertyKey]

}

}

$Body = $BodyHashTable | ConvertTo-Json -Depth 10

$Result = Invoke-WebRequest -Uri $Uri -Body $Body -Method Post

-Credential $Cred

return $Result.Content

}

if (![string]::IsNullOrWhiteSpace($MaterialId)) { $Cus-

tomDispatcherParameters.MaterialId = $MaterialId }

if (![string]::IsNullOrWhiteSpace($MaterialId)) { $Cus-

tomDispatcherParameters.RemotePrintTypeId = $RemotePrintTypeId }

$Properties = @{

Subject = $Subject;

RecordId = $RecordId;

AttachmentRecordIds = $AttachmentRecordIds;

IsApproval = $IsApproval.IsPresent;

IsDeleteOriginal = $IsDeleteOriginal.IsPresent;

IsPreview = $IsPreview.IsPresent;

Deadline = $Deadline;

CustomDispatcherParameters = $CustomDispatcherParameters;

RecipientAddressKeys = $RecipientAddressKeys;

CopyRecipientAddressKeys = $CopyRecipientAddressKeys;

DispatcherSequenceId = $DispatcherSequenceId;

CloseCase = $CloseCase.IsPresent;

CaseState = $CaseState;

OpenCase = $OpenCase.IsPresent;

AllowSendingSeparateDocuments = $Al-

lowSendingSeparateDocuments.IsPresent;

DefaultSendSeparateDocuments =

$DefaultSendSeparateDocuments.IsPresent;

180

Developer Guide

}

Start-WzpProcess -EntityId $FileKey -DefinitionId $DefinitionId -

Title $Title -Description $Description -Subject $Subject -Prop-

erties $Properties -Importance $Importance -Cred $cred -WzUrl

$WzUrl -Acces $Access

181

WorkZone Process 2022.0

Web services
Creating workflows 182

Workflow service 183

OData actions 193

The webservice is a WCF webservice which allows the clients to start and communicate
with the workflows. The table below describes the operations available with the web-
service.

Creating workflows

Get available processes

1. Get all process definitions to a specific case:

http://-

demo2.connectzone.dk/Process/Process.svc/Definitions/

{REGISTER}/{SYSTEMKEY}?tags={TAGS}

KEY is the key of the specific case.

Get information for starting a process

1. Get the template (JSON object) of the process I want to start.

2. To find Guid (definition ID), see Get available processes.

http://-

demo2.connectzone.dk/Process/Process.svc/Definitions

({DEFINITIONID})/StartupInfo

182

Developer Guide

Get a form

1. Use GET to start a process on the current case.

The JSON object from Get information for starting a process is filled in and sent
back using POST on the case which has the matching key (KEY).

http://-

demo2.connectzone.dk/Process/Process.svc/Definitions

({DEFINITIONID})/Form?assetRoot={ASSETROOT}&culture=

{CULTURE}

Start a process

1. Use POST to start a process.

http://-

demo2.connectzone.dk/Process/Process.svc/Processes/

{REGISTER}/{SYSTEMKEY}

Workflow service

Webservice

The webservice is a WCF webservice which allows the clients to start and communicate with
the workflows. The table below describes the operations available with the webservice.

Operation Signature Description

CreateWorkflowFromXml Guid CreateWork-
flowFromXml(string work-
flowData);

Creates a new workflow instance,
based on the parameter work-
flowData.

The parameter must be loadable as
strings in XmlDocument, and inter-

183

WorkZone Process 2022.0

Operation Signature Description

preted as a value of the type work-
flowCreationData.

CreateWorkflow Guid CreateWorkflow(Work-
flowCreationData work-
flowData);

Creates a new running workflow
instance based on work-
flowCreationData.

The value returned is a unique iden-
tifier for the created workflow
instance.

WorkflowCreationData con-
tains specifications such as work-
flow type and version.

ResumeBookmark BookmarkResumptionResult
ResumeBookmark(Guid
instanceId, string book-
markName, object value);

This method is invoked by user
actions in the client, or the expir-
ation of a process. The parameters it
needs is the workflow instance ID,
the bookmark ID, and an object
value, for example the ID of a proxy
user.

The value returned indicates
whether the call succeeded or not:
Success, NotFound, NotReady.

GetWorkflowStatus WorkflowStatus GetWork-
flowStatus(Guid instanceId);

The value returned is the current
status of the workflow: Created, Run-
ning, Persisted, Completed or Faul-
ted.

Host

The table below describes the operations available with the host.

184

Developer Guide

Operation Signature Description

CreateWork-
flowFromXml

Guid CreateWorkflowFromXml(string

workflowData, sjSession session);

Creates a new work-
flow instance, based
on the parameter
workflowData. It
must be loadable as
strings in XmlDocu-
ment, and interpreted
as a value of the type
work-

flowCreationDat-

a.

The parameter ses-
sion is an imper-
sonated
SOM session.

CreateWorkflow Guid CreateWorkflow(Work-

flowCreationData workflowData,

sjSession session);

Creates a new run-
ning workflow
instance based on
work-

flowCreationDat-

a.

The value returned is
a unique identifier for
the created workflow
instance.

Work-

flowCreationDat-

a contains
specifications such
as workflow type and
version.

The parameter ses-
sion is an imper-

185

WorkZone Process 2022.0

Operation Signature Description

sonated
SOM session.

CreateWorkflow Guid CreateWorkflow(Work-

flowCreationData workflowData,

sjSession session, Action<Work-

flowApplicationCompletedEventArgs>

CompletedCallback)

The same as the pre-
vious CreateWork-
flow, but it also
includes the para-
mters Com-
pletedCallback which
is called when the
workflow is com-
pleted.

ResumeBookmark BookmarkResumptionResult

ResumeBookmark(Guid instanceId,

string bookmarkName, object value,

sjSession session);

This method is
invoked by user
actions in the client,
or the expiration of a
process. The para-
meters it needs is the
workflow instance ID,
the bookmark ID, and
an object value, for
example the ID of a
proxy user.

The parameter ses-
sion is an imper-
sonated
SOM session.

The value returned
indicates whether the
call succeeded or
not:
Success,
NotFound,
NotReady.

186

Developer Guide

Operation Signature Description

ResumeBookmark BookmarkResumptionResult

ResumeBookmark(Guid instanceId,

string bookmarkName, object value,

sjSession session, Action<Work-

flowApplicationCompletedEventArgs>

CompletedCallback)

The same as the pre-
vious ResumeBook-
mark, but it also
includes the para-
meter Com-
pletedCallback

which is called when
the workflow is com-
pleted.

GetWorkflowStatus WorkflowStatus GetWorkflowStatus

(Guid instanceId);

The value returned is
the current status of
the
workflow: Created,
Running, Per-
sisted, Com-
pleted or
Faulted.

Initialize void Initialize(sjSession session) Initializes the work-
flow host and loads
the data from the db
which is necessary
for creating work-
flows. Creates work-
flow descriptors, that
is, the known work-
flows in the database,
type, version, and
XAML that describes
the workflow types as
an internal data struc-
ture.

In addition, it sets up
timers for pending

187

WorkZone Process 2022.0

Operation Signature Description

timeouts in currently
persisted workflows.

GetOutputs IDictionary<string, object> GetOut-

puts(Guid instanceId, sjSession

session)

Gets the output argu-
ment IDic-
tionary<string,

object> for a given
completed workflow
instance.

Limitation: outputs
can only be gotten for
workflows which
have been completed
by this instance of the
workflow host. In all
other cases, null will
be returned. The
reason is that this
type of output is not
stored in the data-
base.

GetWork-
flowInformation

RunningWorkflowInformation GetWork-

flowInformation(Guid instanceId,

sjSession session)

Returns all available
information on a work-
flow instance.

GetKnownWork-
flows

IEnumerable<WorkflowType>

GetKnownWorkflows

Gets all workflow
types available, that
is, those workflow
types where the host
is able to create work-
flow instances.

InjectWork-
flowDescriptor

void InjectWorkflowDescriptor(Activity activity,
sjSession session)

Makes an activity
known to the work-

188

Developer Guide

Operation Signature Description

flow host, so that
workflow instances
can be created from
it.

The parameter
activity is the
workflow which is to
be made known to
the host.

session is a
SOM session.

InjectWork-
flowDescriptor

void InjectWorkflowDescriptor(string xaml, string
typeName, Version version, sjSession session)

Makes a workflow
described by XAML
known to the work-
flow host, so that
workflow instances
can be created from
it.

The parameter xaml
is the XAML string,
typeName is the
type name by which
the workflow is to be
known. version is
the versionm,
andsession is a
SOM session.

Interface types

The interface types are represented by classes. Below, these classes are described:

l WorkflowCreationData

l WorkflowStatus

189

WorkZone Process 2022.0

l RunningWorkflowInformation

l WorkflowDescriptor

l WorkflowType.

WorkflowCreationData

public WorkflowType WorkflowType { get; private set; }

WorkflowType gets the workflow type.

public string WorkflowTitle { get; private set; }

WorkflowTitle gets the workflow title.

public string WorkflowParent { get; private set; }

WorkflowParent gets the parent workflow?

public string ProcessId { get; private set; }

ProcessID gets the ID of the running process.

public string Description { get; private set; }

Description gets the description of the process.

public string AssociatedRegister { get; private set; }

AssociatedRegister gets the name of the case register, record (document), contact
or address.

public string AssociatedRegisterKey { get; private set; }

AssociatedRegisterKey gets the register key.

public DateTime EndDate { get; private set; }

190

Developer Guide

EndDate gets the workflow end date.

public IDictionary<string, object> Arguments { get; private

set; }

IDictionary gets the values of the workflow in arguments.

WorkflowStatus

The table describes the values that WorkflowStatus can get:

Value Description

Created The workflow instance has been created but is not yet running.

Running The workflow instance is running.

Persisted The workflow instance is idle and persisted.

Completed The workflow instance is completed.

Faulted The workflow instance has been terminated by an unhandled excep-
tion.

RunningWorkflowInformation

public WorkflowDescriptor Descriptor { get; }

Descriptor gets the descriptor of a running workflow. See description of Work-
flowDescriptor.

public string Owner { get; }

Owner gets the name code of the process owner.

public WorkflowStatus Status { get; }

Status gets the status of the workflow. See description of WorkflowStatus.

191

WorkZone Process 2022.0

public Exception ExceptionThrown { get; }

ExceptionThrown gets the exception description when the workflow is faulted.

public IDictionary<string, object> Outputs { get; }

IDictionary<string, object> gets the output argument for a given completed
workflow instance.

public DateTime PendingTimerExpiration { get; }

PendingTimerExpiration gets the expiration date and time of a pending workflow, if
a timer is running for the workflow.

public bool TimerRunning { get; private set; }

TimerRunning tells if there is a timer on the workflow, and if it is not yet expired.

public string ServerName { get; private set; }

ServerName gets the name of the server that the host will be running on if the timer on the
workflow expires.

WorkflowDescriptor

public Activity WorkflowType { get; private set; }

WorkflowType gets the workflow type as a .NET System.Activities.Activity.

public Version Version { get; private set; }

Version gets the version of the workflow as a .NET System.Version.

public string WorkflowKey { get; private set; }

WorkflowKey gets the key in the workflow register.

public string AssemblyKey { get; private set; }

192

Developer Guide

AssemblyKey gets the workflow assembly key in the workflow_assembly register.

WorkflowType

public string TypeName { get; private set; }

TypeName gets the name of the workflow type.

public Version Version { get; private set; }

Version gets the version of the workflow.

OData actions

OData custom actions are implemented on the following registers:

WzpWorkflowInstance

WzpUserTask

WzpWorkflowInstance

The following custom actions are used:

l Promote: Available on phase workflows and will promote to the next phase.

l Demote: Available on phase workflows and will demote to the previous phase.

l Cancel: Available on any workflow and will cause the workflow to complete.

WzpUserTask

The following custom actions are available on any workflow implementing a user_task:

l Approve: Approves the user task.

l Reject: Rejects the user task.

l Skip: Skips the user task.

193

WorkZone Process 2022.0

l Forward (string nameType, string nameCode): Creates a new user task for the
contact with (name_type and name_code).

l Reschedule (DateTime dueDate): Changes the user task due date to the spe-
cified due date.

Usage of oData custom actions

Usage in C# using the Scanjour.Process.Odata.Client

Given an entity of a WzpWorkflowInstance the actions can be issued from C# code in
the following way:

string id = 3301;

WzpWorkflowInstance instance = (from i in ctx.WzpWork-

flowInstances where i.ID == id select i).Single()

if (ctx.IsActionAvailable(instance, "Promote") ctx.Ex-

ecuteAction(instance, "Promote", null);

Usage in JavaScript

Read more about the usage of OData actions here:

http://msdn.microsoft.com/en-us/library/hh859851(v=vs.103).aspx

194

http://msdn.microsoft.com/en-us/library/hh859851(v=vs.103).aspx

Developer Guide

Database
The WorkZone Process data model is illustrated by the following diagram.

Click here to open a PDF version of the data model in a new window.

Process configuration registers

WZP_PACKAGE

Description: Defines installed packages in the system. New versions of the same package
overwrites the package definition.

Table Type Description

WZP_PACKAGE Main Defines the packages known to the sys-
tem.

195

WorkZone Process 2022.0

WZP_PROCESS

Description: Defines processes in the packages.

Table Type Description

WZP_PACKAGE Parent The package the process originates
from.

WZP_PROCESS Main The process definition.

WZP_PROCESS_
WORKFLOW

Child Mapping between process and work-
flow. Workflows have a start and an
end date. Only one workflow can be act-
ive at a given time.

WZP_PROCESS_
PARAMETER

Child Parameter required for a process. Cur-
rently used for service processes.

Domains:

Table Description

Name Description

Active All active processes.

Active service All active service processes.

Active workflow All active processes which are not service processes.

WZP_WORKFLOW

Description: Defines known workflows in the packages.

Table Type Description

WZP_WORKFLOW Main The workflow definition with Xaml
code.

WZP_PACKAGE Extension The package that the workflow ori-
ginates from.

196

Developer Guide

Table Type Description

WZP_WORKFLOW_
CONTEXT

Extension The context in which the workflow is
valid.

WZP_WORKFLOW_
PROFILE

Extension The profile used to log workflow exe-
cution.

WZP_WORKFLOW_
FORM

Child Forms used by the workflow.

WZP_WORKFLOW_
INSTANCE

Child Actual workflow instances.

WZP_PROCESS_WORKFLOW

Description: Defines mapping between processes and workflows. Workflows have a start and
an end date. Only one workflow can be active at a given time

Table Type Description

WZP_PROCESS Parent The process.

WZP_WORKFLOW Parent The workflow.

WZP_PROCESS_
WORKFLOW

Main The mapping between processes and
workflows.

Domains:

Name Description

Active All active processes.

Active service All active service processes.

Active workflow All active processes which are not service processes.

WZP_PROCESS_PARAMETER

Description: Defines the parameters used by a process. Used when service processes are
defined.

197

WorkZone Process 2022.0

Table Type Description

WZP_PROCESS Parent The process that the parameter is
defined for.

WZP_PROCESS_
PARAMETER

Main The parameter definitions.

WZP_SERVICE

Description: Defines the services process instances. Setup in CCM Operation/Process ser-
vices.

Table Type Description

WZP_PROCESS Parent The process.

WZP_SERVICE Main The service.

WZP_SERVICE_
PARAMETER

Child The service parameters.

WZP_SERVICE_PARAMETER

Description: Parameter values to defined service processes.

Table Type Description

WZP_SERVICE Parent The service.

WZP_SERVICE_
PARAMETER

Main The service parameters.

WZP_ASSEMBLY

Description: Defines assemblies used by a package. Downloaded at startup by the work-
flow host.

Table Type Description

WZP_PACKAGE Parent The package that the assembly

198

Developer Guide

Table Type Description

belongs to.

WZP_ASSEMBLY Main The assemble and assembly code

Process configuration tables

WZP_PACKAGE

Description: Package definitions.

Column Label Description

package_id ID Unique ID.

name Package name Package name required="y".

version Package version Package version required="y".

description Package description Package description.

tracking profile Tracking profile The package tracking profile xml code.

created Created Creation date/time. Automatically created.

create user Created by Created by.

updated Modified Update time. Automatically created.

update user Updated by Updated by.

WZP_PROCESS

Decription: Process definitions.

Column Label Description

process_id ID Unique ID

process_guid Process GUID Process GUID

name Name Process name

199

WorkZone Process 2022.0

Column Label Description

description Description Process description

type Process type Process type (MAIN/SUB)

display_order Process display order Process display order

duration_unit Duration Unit Phase duration unit

default_duration Default duration Default duration in days

default_time Default time Default time of day for duration expiration

near_duration Near duration percentage Near duration percentage. 0 is no near dur-
ation defined. 90% means near duration
happens when 90% of the duration is
gone.

access_code Access code Access code. Access codes must exist for
affected users in the access code register

start_date Start date Process valid from this date

end_date End date Process valid to this date

standard Standard process Standard process - cannot be changed

locked Execution type Process execution type. Must be created
in the custom domain register under cus-
tom domain WZP-LOCK

package_id Package ID Package ID the process is part of

access Execution type Process execution type. Must be created
in the custom domain register under cus-
tom domain.

process_tags Process tags Tags for process usage

WZP_PROCESS_WORKFLOW

Description: Process/workflow map

200

Developer Guide

Column Label Description

row_id Key Key

process_id ID of process ID of the process

wf_id ID of associated workflow ID of the workflow

start_date Start date Process/workflow map valid from this date

end_date End date Process/workflow map valid to this date

access_code Access code Access code. Access codes must exist for
affected users in the access code register.

WZP_ASSEMBLY

Description: Store for the known workflow assemblies in the system.

Column Label Description

assembly_id Key Key

name Assembly name Name of the assembly dll

version Assembly version Assembly version

package_id Package ID Package ID that the assembly is part of

assembly Assembly code The assembly binary code

created Created Creation date/time. Automatically created.

create_user Created by Created by

updated Modified Update time. Automatically created.

update_user Updated by Updated by

WZP_PROCESS_NAME

Description: Localized name table for WZP process name.

201

WorkZone Process 2022.0

Column Label Description

row_id Key Key

process_id Process ID Process ID

text Name Process name

culture_name Language Language code

culture_source Language sourde Culture source from which this entry
has been created from

edited Name edited Name edited

WZP_PROCESS_DESC

Description: Localized description table for WZP process description.

Column Label Description

row_id Key Key

process_id Process ID Processs ID

text Process description Process description

culture_name Language Language code

culture_source Language source. Culture source from which this entry
has been created from

edited Name edited Name edited

WZP_PROCESS_PARAMETER

Description: Service workflow parameters.

Column Label Description

row_id ID Unique ID.

process_id ID Unique process ID.

202

Developer Guide

Column Label Description

name Parameter name The name of the parameter.

description Description Parameter description.

type Parameter type The parameter type (STRING,
INTEGER, PASSWORD).

mandatory Mandatory The parameter value is mandatory.

argument InArgument The parameter is InArgument to the
workflow.

WZP_SERVICE

Description: Service workflow definitions.

Column Label Description

service_id ID Unique ID.

process_id ID Unique process ID.

name Parameter name The name of the service workflow.

interval Monitor interval

restart interval Monitor interval

enabled Service enabled Service is enabled

hostnames List of hosts The hostnames where the service should
run. If blank only one instance is running.

WZP_SERVICE_PARAMETER

Description: Service workflow parameters.

Column Label Description

row_id ID Unique ID.

203

WorkZone Process 2022.0

Column Label Description

service_id ID Unique ID.

name Parameter name The name of the parameter.

description Description Parameter description.

type Parameter type The parameter type.

mandatory Mandatory The parameter value is mandatory.

argument InArgument The parameter is InArgument to the work-
flow.

value Parameter value The value of the parameter.

created Created Creation date/time. Automatically created.

updated Modified Update time. Automatically created.

WZP_WORKFLOW

Description: Store for the known workflow xaml descriptions in the system.

Column Label Description

wf_id Key Key

package_id Package ID Package ID workflow is part of

typename Workflow type name Name of the workflow (Xaml filename)

version Xaml version Xaml version (Xaml version)

xaml Xaml code The workflow Xaml code

activity_version Activity version Version of activity library

standard Standard workflow Standard workflow / cannot be
changed

access_code Access code Access code. Access codes must
exist for affected users in the access
code register.

204

Developer Guide

Column Label Description

phase_label Phase label Label text for phase information. Label
texts must be created in the label text
register with type WZP-PHASE

task_label Label Label text for task information. Label
texts must be created in the label text
register with type) WZP-TYPE

created Created Creation date/time. Automatically cre-
ated.

create_user Created by Created by

updated Modified Update time. Automatically created.

update_user Updated by Updated by.

WZP_WORKFLOW_CONTEXT

Description: Store for the workflow context specification.

Column Label Description

wf_id Key Key

register Register Register

entity_filter Entity Filter OData filter on entity to check if it can be a
context for workflow

tag_filter Tag Filter Logical expression on context tags for val-
idation of the context against the workflow

Process forms registers

WZP_FORM

Description: User interface forms used in workflows.

205

WorkZone Process 2022.0

Table Type Description

WZP_FORM Main Forms used as process user inter-
face.

WZP_FORM_VIEW Extension Storage for the view part of the form.

EXP_FORM_
CONTROLLER

Extension Storage for the controller part of the
form

WZP_FORM_DATA

Description: Specification of data associated with the form.

Table Type Description

WZP_FORM Parent Forms used as process user inter-
face

WZP_FORM_DATA Main Data context for forms

WZP_FORM_ASSET

Description: User interface assets shared between different forms.

Table Type Description

WZP_FORM_ASSET Main User interface assets shared
between forms

WZP_WORKFLOW_FORM

Description: Specification of which forms used in workflows.

Table Type Description

WZP_WORKFLOW_
FORM

Main The mapping between workflow
and forms

WZP_FORM Extension The init form (group:form)

206

Developer Guide

Table Type Description

WZP_FORM Extension The edit form (group:edit_form)

Process forms tables

WZP_FORM

Description: Forms used as process user interface.

Column Label Description

form_id Form Identity Form Identity

form_guid Global Form Identity Global Form Identity

package_form_guid Global Form Identity Global Form Identity 4.2 and later

package_id ID Unique ID

package_version Package version Package version

name Form Name Form Name

default Is Default Default form to be used for starting work-
flows

WZP_FORM_VIEW

Description: Storage for the 'view' part of the form

Column Label Description

form_id Form Identity Form Identity

content_type Content Type Content type used in HTTP header

content Content View content

207

WorkZone Process 2022.0

WZP_FORM_CONTROLLER

Description: Storage for the 'controller' part of the form

Column Label Description

form_id Form Identity Form Identity

content Content JavaScript content

WZP_FORM_DATA

Description: Data context for forms

Column Label Description

row_id ... Internal unique id

form_id Form Identity Form Identity

name Name of the context Name of the data context

max_offline_pages Max offline page Max OData pages to be retrived for off-
line usage

query Query OData Query

parameters Query parameters OData Query parameyters

WZP_WORKFLOW_FORM

Description: Relation between workflows and forms

Column Label Description

row_id ... Internal unique ID

wf_id Workflow Identity The workflow to be started using spe-
cified form

form_id Form Identity The form used to start the workflow

default Is Default Is the form default for starting the work-

208

Developer Guide

Column Label Description

flow

edit_form_id Edit Form Identity The form used to edit the workflow

WZP_FORM_ASSET

Description: Storage for shared user interface assets

Column Label Description

asset_id Asset Identity Asset Identity

key Asset Key File-system friendly asset key

content_type Content Type Content type used in HTTP header

content Asset Content Base64 encoded content of the asset

created Created Creation date/time. Automatically cre-
ated.

create_user Created by Created by

updated Modified Update time. Automatically created.

update_user Updated by Updated by

Process instance registers

WZP_WORKFLOW_INSTANCE

Description:Known workflow instances in the system.

Table Type Description

FILE Parent The file the instance is
running under.

WZP_WORKFLOW Parent The workflow which is
instanciated.

209

WorkZone Process 2022.0

Table Type Description

WZP_WORKFLOW_
INSTANCE

Main The workflow instance.

V_WZP_LOCK_INSTANCE Extension The Instance lock.

V_WZP_ROOT Extension Instance root flag.

V_WZP_RUNNING_
INSTANCE

Extension The instance count for
root instances.

WZP_INSTANCE_
BOOKMARK

Extension Currently available book-
marks.

WZP_INSTANCE_
ARGUMENT

Extension Instance arguments to
start instance.

WZP_WORKFLOW_
INSTANCE_ELAB

Extension Instance free text.

WZP_PROCESS Extension Instance process.

WZP_PHASE Child Phases (for phase
instance).

WZP_USER_TASK Child All UserTasks
(group:task).

WZP_USER_TASK Child Open user. Tasks only
(group:opentask).

WZP_CASE_ACTIVITY Child Case activities (for case
activity instance).

WZP_SERVICE_
PARAMETER

Child Instance parameters (for
service instance).

V_WZP_OPEN_USER_
TASK

Extension Current open user task
only.

V_WZP_MY_OPEN_TASK Extension Open user task for me.

V_WZP_MY_OU_OPEN_ Extension Open user task for my

210

Developer Guide

Table Type Description

TASK ou.

V_WZP_TASK_ERROR Extension Most important error in
instance.

WZP_HISTORY Child User task history.

V_WZP_WORKFLOW_
INSTANCE_RECORD

Child Records used in tasks.

WZP_WORKFLOW_INSTANCE_ELAB

Description: Known workflow instances in the system. Used for free text searches.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance.

WZP_WORKFLOW_
INSTANCE_ELAB

Main The instance elaborating text

WZP_LOCK_INSTANCE

Description: The known workflow instances locks in the system.

Table Type Description

V_WZP_LOCK_
INSTANCE

Main Instance lock.

WZP_WORKFLOW_STREAM

Description: Workflow stream storage.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The instance.

WZP_WORKFLOW_ Parent The persisted data for stream argu-

211

WorkZone Process 2022.0

Table Type Description

STREAM ments.

WZP_WORKFLOW_INSTANCE_RECORD

Description: Workflow instance records.

Table Type Description

RECORD Parent The record metadata for doc-
uments.

V_WZP_
WORKFLOW_
INSTANCE_
RECORD

Main The documents used for the
instance.

WZP_WORKFLOW_LOG

Description: Workflow instance acticity log.

Table Type Description

WZP_WORKFLOW_
LOG

Main The instance execution log.

Process instance tables

WZP_INSTANCE_ARGUMENT

Description: The workflow instances InArguments.

Column Label Description

row_id workflow instance ID Workflow instance ID.

dictionary InArguments Workflow InArguments dictionary

212

Developer Guide

WZP_WORKFLOW_INSTANCE

Description: The known workflow instances in the system

Column Label Description

row_id ... Internal unique id

instance_id workflow instance Id Workflow instance Id

parent_id Workflow parent instance Workflow parent instance id

service_id Service ID Service ID

root_id workflow root instance Id Workflow root instance Id

wf_id Workflow ID Workflow ID

process_id Process ID Process ID

title Title Title

description Description Remark

register Register Register

register_key Register key Register key

file_key File key register key when register = FILE

persistence_state State Workflow persistance state

server_name Server name Server name

workflow_status Workflow status Workflow status

created Creation date/time. Automatically cre-
ated.

create_user Created by Created by

updated Modified Update time. Automatically created.

closed User task closed date The time the workflow was completed.

213

WorkZone Process 2022.0

Column Label Description

pending_time Due date Time when workflow is to be resumed.

due_date Workflow close date Time when workflow is supposed to
be ended.

owner Created by Name of the user who created the
item. Automatically updated.

owner_ou Owner department at cre-
ation time

Owner department at creation time.

importance Instance importance Workflow instance importance. Must
be created in the custom domain
register under custom domain WZP-
PRIO.

access Execution type Process execution type. Must be cre-
ated in the custom domain register
under custom domain WZP-LOCK.

access_code Indblik Dummy placeholder to overcome a
bug in som when foreignAccessCheck
is used in the wzp_workflow_task
register

log cleared Log cleared date The time the workflow log was
cleared.

WZP_WORKFLOW_LOG

Description: Workflow activity log

Column Label Description

row_id Key Internal unique id

server_name Server Name Server Name

process_id Windows process Id Windows process Id

214

Developer Guide

Column Label Description

event_datetime Timestamp TimeStamp

instance_id Workflow Instance Id Workflow Instance Id

workflow_type Workflow Type Workflow Type

activity_type Activity Id Activity Id

activity_name Activity Type Activity Type

action_type Action Type Action Type

record_type Record Type Record Type

properties Properties Activity Properties

WZP_WORKFLOW_STREAM

Description: Workflow Stream Storage

Column Label Description

stream_id Stream ID Stream key

instance_id Workflow Instance ID Reference to the workflow instance
owning the stream

title Stream Content Title Name of file the stream was produced
from

extension Stream Content Extension Extension of file the stream was pro-
duced from

content_type Stream content type MIME content type of the stream con-
tent.

content Stream Content Content of the stream

WZP_INSTANCE_BOOKMARK

Description: The workflow instances bookmarks

215

WorkZone Process 2022.0

Column Label Description

instance_id workflow instance ID Workflow instance ID

bookmarks Bookmarks Enabled bookmarks

WZP_WORKFLOW_INSTANCE_ELAB

Description: Search table for workflow_instance

Column Label Description

instance_id Instance ID Instance ID of workflow

elab_text elab Describing identification of the work-
flow_instance

V_WZP_LOCK_INSTANCE

Description: The known workflow instances locks in the system

Column Label Description

instance_id workflow instance ID Workflow instance ID

locked Locked Locked while loaded

update_status Workflow status at update Workflow status at update

V_WZP_WORKFLOW_INSTANCE_RECORD

Description: Records attached to the workflow instance

Column Label Description

instance_id Instance ID Records attached to the workflow
instance

record_id Record identity Record identity

216

Developer Guide

WZP_HISTORY

Description: The known workflow tasks in the system

Column Label Description

row_id Key Unique task key

instance_id Instance ID Instance ID

root_id Root workflow instance ID Root workflow instance ID

wf_id Workflow key Workflow key

user_task_id User Task ID User Task ID

name_key Contact number Contact system key

name_code Responsible Name code of person/department to
respond

name_type Contact type Name type of person/department to
respond

name_ou Name ou Ou of contact to respond if contact is
employee or department

proxy_code Proxy Name code of employee actually
responding

proxy_ou Proxy ou Ou of employee actually responding"

proxy_code Proxy Name code of employee actually
responding

register Register Register

register_key Register key Register key

task_label Label Label text for task information. Label
texts must be created in the label text
register with type = WZP-TYPE"

task_action Action Task action

217

WorkZone Process 2022.0

Column Label Description

show Show Include in list

created Created Creation date/time. Automatically cre-
ated.

create_user Created by Created by

comment Comment Remark

WZP_WORKFLOW_PROFILE

Description: Store for the known workflow xaml descriptions in the system.

Column Label Description

wf_id Key Key

tracking_profile Tracking profile The package tracking profile xml
code

V_WZP_ROOT

Description: Workflow_instance root indicator.

Column Label Description

instance_id Instance ID Instance ID of workflow.

is_root Is root process Is root process.

V_WZP_RUNNING_INSTANCE

Description: Workflow_instance running children indicator.

Column Label Description

instance_id Instance ID Instance ID of workflow.

running_instances Number of running MAIN and
SUB

Number of running MAIN and SUB.

V_WZP_WORKFLOW_INSTANCE_RECORD

Description: Records attached to the workflow instance.

218

Developer Guide

Column Label Description

instance_id Instance ID Instance ID

record_id Record identity Record identity

V_WZP_USER_TASK_APPROVER

Description: Determine which users have participated in a process.

Column Label Description

instance_id Instance ID Instance ID

name_key Contact number Contact system key

name_code Responsible Name code of person/department to
respond

name_type Contact type Name type of person/department to
respond.

elab_text elab_text Elaborating text

Process task registers

WZP_USER_TASK

Description: Known workflow user tasks in the workflow instances.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance the user task
belongs to.

WZP_WORKFLOW_
INSTANCE

Parent The root workflow instance (group:-
root).

WZP_FORM Parent The init and edit forms for the user
task.

WZP_USER_TASK Main The user task.

219

WorkZone Process 2022.0

Table Type Description

WZP_USER_TASK_
TITLE

Child The localized title.

WZP_USER_TASK_
RECORD

Child Attachment documents (group:at-
tachment).

WZP_USER_TASK_
RECORD

Child The answer documents
(group:answer).

WZP_HISTORY Child The user task history.

WZP_OPEN_USER_TASK

Description: Known workflow user tasks in the workflow instances.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance the user task
belongs to.

V_WZP_OPEN_
USER_TASK

Main Open user tasks.

WZP_USER_TASK_ATTACHMENT

Description: Records attached to the user task.

Table Type Description

WZP_USER_TASK Parent The user task.

WZP_USER_TASK_
ATTACHMENT

Main The attached documents.

RECORD Extension Document metadata.

WZP_USER_TASK_INSERT

Description: Records attached to the user task including deleted records.

220

Developer Guide

Table Type Description

WZP_USER_TASK Parent The user task.

WZP_USER_TASK_
ATTACHMENT

Main The attached documents.

RECORD Child The document metadata

WZP_TASK_STATUS

Description: Known user task status in the workflow instances. Used to create user tasks
without any actor.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance the user task
belongs to.

WZP_WORKFLOW_
INSTANCE

Parent The root workflow instance (group:-
root).

WZP_TASK_
STATUS

Main The user task.

WZP_HISTORY

Description: The history of the known workflow tasks in the system.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance the user task
belongs to.

WZP_HISTORY Main The user task history.

WZP_PHASE

Description: The phases for a MAIN workflow.

221

WorkZone Process 2022.0

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance the user task
belongs to.

WZP_PHASE Main The phases in MAIN process work-
flows.

Process task tables

WZP_PHASE

Description: Workflow phases of a mainflow

Column Label Description

row_id

instance_id workflow instance Id Workflow instance Id

number Phase number Phase number

label Phase label Label text for phase information.
Label texts must be created in
the label text register with type =
WZP-PHAS

name Phase name Phase name

state State Phase state. Must be defined in
the custom_Must be created in
the custom domain register
under custom domain WZP-
TSTA

action Action Phase action

schedule Schedule Phase schedule

role Phase role Phase role.

222

Developer Guide

Column Label Description

near_duration Phase near duration Phase near duration

duration Phawse duration Phase duration

opened Phase opened date The last time the phase was
opened

closed Phase closed date The last time the phase was
closed.

near_due_date Due date The period available to nearly
complete the phase.

due_date Due date The period available to com-
plete the phase.

calculated Calculated DueDate is calculated

WZP_TASK_STATUS

Description: The known workflow tasks in the system

Column Label Description

task_id Key Unique task key

instance_id Workflow instance identity Workflow instance identity

root_id Root workflow instance
identity

Root workflow instance identity

name_key Contact number Contact system key

name_code Responsible Name code of actor

name_type Contact type Name type of actor

name_ou Organization unit of actor Organization unit of actor

task_order Display order Display order

task_state State Workflow task state. Must be created in the

223

WorkZone Process 2022.0

custom domain register under custom
domain WZP-TSTA

task_label Label Label text for task information. Label text
must be created in the label text register with
type = WZP-TYPE

task_action Action Task action

task_schedule State Workflow task schedule. Must be created in
the custom domain register under custom
domain WZP-TTIM

task_error Error type Workflow task error type: Must be created in
the custom domain register under custom
domain WZP-TERR

due_date Due date The period available to complete the user
task

comment Comment Remark

show Show Include in list

opened User task opened date The time the user task was opened

closed User task closed date The time the task was closed.

created Created Creation date/time. Automatically created.

create_user Created by Created by

updated Update time. Automatically created.

update_user Updated by Updated by

title Title User Task title

WZP_USER_TASK_TITLE

Description: Localization table for user task title

Column Label Description

224

Developer Guide

row_id Key Key

task_id User Task ID User Task ID

text Name User Task title

culture_name Language Language code

culture_source Label source Culture source from which this
entry has been created from

WZP_USER_TASK_ATTACHMENT

Description: Records attached to the user task

Column Label Description

row_id Key Key

task_id Task identity Task identity

record_id Record identity Record identity

record_type Type Record type. Must be created in the
custom domain register under cus-
tom domain WZP-RTYP

property_name Property name The name of the property the doc-
ument originates from

priority Document order Document order

attach Attach Attach document to mail

WZP_USER_TASK_RECORD

Description: Records attached to the user task

dbname:"wzp_user_task_attachment"

Column Label Description

225

WorkZone Process 2022.0

row_id Key Key

task_id Task identity Task identity

record_id Record identity Record identity

record_type Type Record type. Must be created in the
custom domain register under cus-
tom domain WZP-RTYP

property_name Property name The name of the property the doc-
ument originates from

priority Document order Document order

attach Attach Attach document to mail

WZP_USER_TASK

Description: The known workflow tasks in the system

Column Label Description

task_id Key Unique task key

instance_id Workflow instance iden-
tity

Workflow instance identity

root_id Root workflow instance
identity

Root workflow instance identity

group_id Task group identity Task group identity

form_id Smart task form identity Smart task form identity

name_key Contact number Contact system key

name_code Responsible Name code of actor

name_type Contact type Name type of actor

name_ou Organization unit of actor Organization unit of actor

proxy_code Proxy Name code of employee actually respond-

226

Developer Guide

ing

proxy_ou Proxy ou Ou of employee actually responding

task_order Display order Display order

task_state State Workflow task state. Must be created in the
custom domain register under custom
domain WZP-TSTA

task_label Label Label text for task information. Label texts
must be created in the label text register
with type = WZT-TYPE

task_action Action Task action

task_schedule State Workflow task schedule. Must be created in
the custom domain register under custom
domain WZP-TTIM

task_error Error type Workflow task error type. Must be created
in the custom domain register under cus-
tom domain WZP-TERR

access Execution type Execution type. Must be created in the cus-
tom domain register under custom domain
WZP-LOCK.

mandatory Mandatory Mandatory actor

near_duration Phase near duration User task near duration

duration Phase duration User task duration

near_due_date Due date The period available to nearly complete the
user task.

due_date Due date The period available to complete the user
task.

calculated Calculated Due date and near due date is calculated

comment Comment Remark

227

WorkZone Process 2022.0

show Show Include in list

is_notification Is notification? Flag specifying if task doesn't require
action from actor.

severity Severity Severity

importance Instance importance Workflow instance importance. Must be cre-
ated in the custom domain register under
custom domain WF4_PRIO

update_code Update code Update access code. Access codes must
exist for affected users in the access code
register

properties Properties Serialized JSON object containing prop-
erties of the user task.

opened User task opened date The time the user task was opened.

closed User task closed date The time the task was closed.

created Created Creation date/time. Automatically created.

create_user Created by Created by

updated Update time. Automatically created.

update_user Updated by Updated by

title Title User Task title

V_WZP_OPEN_USER_TASK

Description: The known open workflow tasks in the system

Column Label Description

instance_id Workflow instance identity Workflow instance identity

task_state State Workflow task state. Must be cre-
ated in the custom domain
register under custom domain

228

Developer Guide

WZP-TSTA

multiple Multiple Multiple open tasks in instance

name_type Contact type Name type of actor

name_code Responsible Name code of actor

name_ou Organization unit of actor Organization unit of actor

WZP_HISTORY

Description: The known workflow tasks in the system.

Column Label Description

row_id Key Unique task key

instance_id Instance ID Instance ID

root_id Root workflow
instance ID

Root workflow instance ID

wf_id Workflow key Workflow key

user_task_id User Task ID User Task ID

name_key Contact num-
ber

Contact system key

name_code Responsible Name code of person/department to respond

name_type Contact type Name type of person/department to respond

name_ou Name ou Ou of contact to respond if contact is employee or
department

proxy_code Proxy Name code of employee actually responding

proxy_ou Proxy ou Ou of employee actually responding

register Register Register

register_key Register key Register key

229

WorkZone Process 2022.0

task_label Label Label text for task information. Label texts must be
created in the label text register with type = WZP-
TYPE

task_action Action Task action

show Show Include in list

created Created Creation date/time. Automatically created.

create_user Created by Created by

comment Comment Remark

WZP_HISTORY_DESC

Description: Localization table for commen

Column Label Description

row_id Key Key

task_id User Task ID History ID

text Name The Comment

culture_name Language Language code

culture_source Label sourc Culture source from which this
entry has been created from

V_WZP_MY_OPEN_TASK

Description: Total number of open workflow tasks for me in the system.

Column Label Description

instance_id Workflow instance identity Workflow instance identity

number_open_task Number of open tasks for me Number of open tasks for me

230

Developer Guide

V_WZP_MY_OU_OPEN_TASK

Description: Total number of open workflow tasks for my ou in the system.

Column Label Description

instance_id Workflow instance identity Workflow instance identity

number_open_task Number of open tasks for my
ou

Number of open tasks for my ou

V_WZP_TASK_ERROR

Description: The known open task error in workflow instances.

Column Label Description

instance_id Workflow instance identity Workflow instance identity

multiple Multiple Multiple open tasks in instance

task_error Error type Workflow task error type. Must be
created in the custom domain
register under custom domain
WZP-TERR.

Miscellaneous registers

WZP_PROXY

Description: Define delegates for actors.

Table Type Description

Type Description

WZP_PROXY Main Define delegates for users.

231

WorkZone Process 2022.0

Table Type Description

NAME Extension Actor information (group:actor)

V_OU_EMPLOYEE_
DOMAIN

Extension Delegate information (group:proxy)

WZP_FILE_USER_RIGHT

Description: Determine which users have read access for a given file.

Table Type Description

Table Type Description

V_WZP_FILE_
USER_RIGHT

Main Users with read access to a file

WZP_SETTINGS

Description: WorkZone Process settings.

Table Type Description

WZP_SETTINGS Main The key / value settings

WZP_SEQUENCE_MASK

Description: WorkZone Process sequence masks.

Table Type Description

WZP_SEQUENCE_
MASK

Main The sequence masks

WZP_SEQUENCE_
MASK_ITEM

Child The sequence mask members.

232

Developer Guide

WZP_PUSH_SUBSCRIPTION

Description: Defines which IPad or IPhone devices are eligible for push subscriptions.

Table Type Description

EMPLOYEE Parent The user information

WZP_PUSH_
SUBSCRIPTION

Main The subscription

WZP_MAIL_NOTIFICATION

Description: Defines which users are receiving mail notifications.

Table Type Description

WZP_MAIL_
NOTIFICATION

Main The mail notification users.

Miscellaneous tables

WZP_PROXY

Description: N/A

Column Label Description

row_id Row ID System key

name_key Contact number Contact system key

proxy_key Contact number Contact system key

proxy_role Role Proxy role. Must be created in the cus-
tom domain register under custom
domain WZP-PRXY

233

WorkZone Process 2022.0

V_WZP_FILE_USER_RIGHT

Description: Determine which users have read access for a given file

Column Label Description

file_key Key in file Case key, key (system ID) to the file
register

name_key Contact number Contact system key

name_code Responsible Name code of person/department to
respond

name_type Contact type Name type of person/department to
respond

elab_text elab_text elaborating text

WZP_SETTINGS

Description: N/A

Column Label Description

row_id Row ID

module module module

key Setting key

access_code Access code Access code. Access codes must
exist for affected users in the access
code register

value Setting value

WZP_PUSH_SUBSCRIPTION

Description: N/A

234

Developer Guide

Column Label Description

row_id Row ID

device_token Device token Device token

user_name Subscriber Username

subscription_date Created Creation date/time. Automatically cre-
ated.

Locale_id Locale ID The locale used on the device.

WZP_MAIL_NOTIFICATION

Description: Workzone mail notification

Column Label Description

name_key Contact number Contact system key

receive_mail_Noti-
fication

Notification Receive mail notifications

WZP_SEQUENCE_MASK

Description: N/A

Column Label Description

sequence_id Sequence ID

name module module

description Setting key

access_code Access code Access code. Access codes must exist
for affected users in the access code
register

update_code Update code Update access code. Access codes
must exist for affected users in the
access code register

235

WorkZone Process 2022.0

Column Label Description

shared Shared sequence Shared sequence

created Created Creation date/time. Automatically cre-
ated.

create_user Created by Created by

updated Modified Update time. Automatically created.

update_user Updated by Updated by

WZP_SEQUENCE_MASK_ITEM

Description: N/A

Column Label Description

row_id Row id

sequence_id Sequence id

name_key Contact number Contact system key

order Sequence item order Sequence item order

date_offset Item duration offset Item duration offset

Case activity registers

WZP_CASE_ACTIVITY

Description: Case activities for a case from DCR process events.

Table Type Description

WZP_WORKFLOW_
INSTANCE

Parent The workflow instance the smart-
task belongs to.

WZP_WORKFLOW_
INSTANCE

Parent The root workflow instance (group:-
root).

236

Developer Guide

Table Type Description

WZP_FORM Parent The case activity init form.

WZP_CASE_
ACTIVITY

Main The case activities.

WZP_CASE_
ACTIVITY_TITLE

Child The localized case activity title.

WZP_CASE_
ACTIVITY_HISTORY

Child The case activity history.

WZP_CASE_ACTIVITY_HISTORY

Description: Case activity history.

Table Type Description

WZP_CASE_
ACTIVITY_HISTORY

Main The case activity history.

Case activity tables

WZP_CASE_ACTIVITY

Description: The known DCR process events in a DCR process.

Column Label Description

instance_id Workflow instance identity Workflow instance identity.

root_id Root workflow instance iden-
tity

Root workflow instance identity.

activity_type Activity type activity type. Must be created in the cus-
tom domain register under custom
domain WZP-ATYP.

237

WorkZone Process 2022.0

Column Label Description

activity_name Activity name Activity name

description Description Activity description

comment Comment Remark

value Activity value Activity value entered at execute.

role Actor role Actor role. Must be created in the cus-
tom domain register under custom
domain WZP-ROLE.

form_id Activity form identity Activity form identity.

name_key Contact number Name key of respondee.

name_code Responsible Name code of respondee.

name_type Contact type Name type of respondee.

name_ou Organization unit of
respondee

Organizational unit of respondee

proxy_code Proxy Name code of employee actually
responding.

proxy_ou Proxy ou Ou of employee actually responding.

activity_state State Activity state. Must be created in the
custom domain register under custom
domain WZP-ASTA.

activity_schedule State Activity schedule. Must be created in
the custom domain register under cus-
tom domain WZP-TTIM.

activity_error Error type Activity error type. Must be created in
the custom domain register under cus-
tom domain WZP-TERR.

access Execution type Execution type. Must be created in the
custom domain register under custom

238

Developer Guide

Column Label Description

domain WZP-LOCK.

near_duration Phase near duration Smarttask near duration.

duration Phase duration Smarttask duration.

near_due_date Due date The period available to nearly com-
plete the smarttask.

due_date Due date The period available to complete the
smarttask.

calculated Calculated Due date and near due date is cal-
culated.

severity Severity Severity

importance Instance importance Workflow instance importance. Must
be created in the custom domain
register under custom domain WF4_
PRIO.

update_code Update code Update access code. Access codes
must exist for affected users in the
access code register.

executed User task opened date The time the user task was opened.

created Created Creation date/time. Automatically cre-
ated.

create_user Created by Created by

updated Modified Update time. Automatically created.

update_user Updated by Updated by

WZP_CASE_ACTIVITY_TITLE

Description: Localization table for activity title.

239

WorkZone Process 2022.0

Column Label Description

row_id Key Key

activity_id Activity ID Activity ID

text Name User task title

culture_name Language Language code

culture_source Language source Culture source from which this entry
has been created from***

edited Name edited Name edited

WZP_CASE_ACTIVITY_HISTORY

Description: The executed action events in a DCR process.

Column Label Description

row_id Key Unique history key

activity_id Key Unique activity key

activity_action Action Activity action. Must be created in
the custom domain register under
custom domain WZP-AACT.

activity_schedule State Activity schedule. Must be created
in the custom domain register under
custom domain WZP-TTIM

comment Comment Remark

value Activity value Activity value entered at execute.

proxy_code Proxy Name code of employee actually
responding.

proxy_ou Proxy ou Ou of employee actually respond-
ing.

240

Developer Guide

Column Label Description

created Created Creation date/time. Automatically
created.

SmartPost registers

WZP_IDENTIFIER_SOURCE

Description: Configuration of where to locate identifiers of various party types.

Table Type Description

WZP_exception_
class

Main

WZP_EXCEPTION_CLASS

Description: Configuration of exceptions and actions to exceptions.

Table Type Description

WZP_exception_
class

Main

WZP_EBOKS_MATERIAL

Description: A material entity reflects a material defined by the e-Boks Administration Portal. A
material type relates to one or more subscription groups. Any messages sent to e-Boks must
be of one (and only one) material.

Table Type Description

WZP_EBOKS_
MATERIAL

Main

WZP_EBOKS_ Child

241

WorkZone Process 2022.0

Table Type Description

MATERIAL_NAME

WZP_NAME_EXTENSION

Description: An extension of the NAME table. The table keeps track of contact sub-
scriptions and MRU (Most Recently Used) lists.

Table Type Description

WZP_NAME_EXTENSION Main

WZP_INDENTIFIER_SOURCE Extension

WZP_EBOKS_SUBSCRIPTION

Description: Direct access to the EBOKS_SUBSCRIPTION table used for unsubscribing.

Table Type Description

WZP_EBOKS_SUBSCRIPTION Main

WZP_SHIPMENT_TYPE

Description: The configured dispatch types.

Table Type Description

WZP_SHIPMENT_TYPE Main

WZP_SHIPMENT_TYPE_NAME Child

WZP_SHIPMENT_TYPE_
ORDER

Child

WZP_SHIPMENT_TYPE_ORDER

Description: The configured dispatch type order.

242

Developer Guide

Table Type Description

WZP_DISPATCHER Parent

WZP_SHIPMENT_TYPE_
ORDER

Main

WZP_REMOTE_PRINT_TYPE

Description: The configuration of a remote print type.

Table Type Description

WZP_REMOTE_PRINT_TYPE Main

WZP_REMOTE_PRINT_TYPE_
NAME

Child

WZP_SMARTPOST_LOG

Description: The SmartPost dispatch log. Used to build the SmartPost history log.

Table Type Description

WZP_SMARTPOST_LOG Main

WZP_SMARTPOST_RECIPIENT Child

WZP_SMARTPOST_
ATTACHMENT

Child

WZP_SMARTPOST_RECIPIENT

Description: The SmartPost dispatch recipient log. Used to build the SmartPosthistory log.

Table Type Description

WZP_SMARTPOST_RECIPIENT Main

243

WorkZone Process 2022.0

WZP_SMARTPOST_ATTACHMENT

Description: The SmartPost dispatch attachment log. Used to build the SmartPost history
log.

Table Type Description

WZP_SMARTPOST_
ATTACHMENT

Main

RECORD Extension

WZP_DISPATCHER

Description: Communication channel.

Table Type Description

WZP_DISPATCHER Main

WZP_DISPATCHER_NAME Child

WZP_DISPATCHER_PARAMETER

Description: Configuration of dispatchers.

Table Type Description

WZP_DISPATCHER Parent

WZP_DISPATCHER_
PARAMETER

Main

SmartPost tables

WZP_FILE_EXTENSION

Description: Table that contains the status before OpenCaseScope changes it.

244

Developer Guide

Column Label Description

file_key Surrogate key in SP. Case number. Surrogatekey (systemident.) to
the FILE register.

prev_closed Original closed date Original closed state before updated by con-
structor in OpenCaseState in SmartPort

prev_update_code Original update code Original update code before updated by con-
structor in OpenCaseState in SmartPort

WZP_IDENTIFIER_SOURCE

Description: Configuration of where to locate identifiers for various party types.

Column Label Description

party_identifier_
source_key

Party Identifier Source Key Unique identifier for the table entities.

name_type Name Type The name type from the NAME entity

e_boks_source e-boks Source The source for e-Boks CVR/CPR num-
bers.

att_source Attention Source The source for making attention fields in
attached attention.xml file.

id ID Unique identifier for the exceptions
classes.

exception_type_
name

ExceptionTypeName ExceptionTypeName.

priority ID Priority of the exception if more than one
matches.

exception_mes-
sage_filter

ExpressionMessageFilter Filter that must match all exceptions of
this class.

exception_scope_
string

ExpressionScopeString The name of the scope where the excep-
tion is legal.

245

WorkZone Process 2022.0

Column Label Description

presentation_string_
template

PresentationScopeString Presentation string template. It may con-
tain matches from regular expression.

error_code ErrorCode Error code extracted from exception.

description Description Description of the excption class .

exception_action_
string

ActionString Action to perform for this exception
class.

WZP_EBOKS_MATERIAL

Description: A material entity reflects a material defined by the e-Boks Administration
Portal. A material type relates to one or more subscription groups. Any messages sent to e-
Boks must of one (and only one) material.

Column Label Description

material_key Material key Unique identifier for table entities.

external_id External Identifier Unique identifier of the material specified
externally by e-Boks.

order Display order Display order.

replyable Can be replied to. Indicates whether it is possible for the end
user to reply on messages containing this
material.

access_code Access code Access code. The access codes to use
must be registered for the relevant users in
the ACCESS_CODE register.

material_key Material key Unique identifier for table entities.

external_id External Identifier Unique identifier of the material specified
externally by e-Boks.

order Display order Display order.

access_code Access code Access code. Access codes to be used

246

Developer Guide

Column Label Description

must be registered for the relevant users in
the ACCESS_CODE register.

row_id ... Internal unique ID.

WZP_EBOKS_MATERIAL_NAME

Description: Localized names for dispatch types.

Column Label Description

material_key ... Material key..

text Text Localized name.

culture_name Culture Culture name.

culture_source ... Culture source from which this entry has
been created.

edited ... Edited flag.

WZP_NAME_EXTENSION

Description: Extension to a contact. Used for avoiding free search trigger.

Column Label Description

name_code Contact code Contact code.

name_key Navnelbnr Surrogate key (system ID) in the NAME
register.

name_type Contact type Contact type.

tax_id_no CVR No CVR No.

tax_id_prod_no P No Production unit ID.

last_material_key Last used material key The last used material key.

247

WorkZone Process 2022.0

WZP_EBOKS_SUBSRIPTION

Description: Extension to a contact. Used for unsubscribing manually.

Column Label Description

system_id Dispatch system e-Boks dispatch system ID

recipient_id ident Recipient ID.

recpient_type ident type Recipient type.

content_type content type Content type.

is_subscribing is subscribing is subscribing.

WZP_SHIPMENT_TYPE

Description: The configured dispatch types.

Column Label Description

shipment_key Key for shipment type Unique identifier for the table entities.

order Display order Display order.

access_code Access code Access code. Access codes to be used
must be registered for the relevant users in
the ACCESS_CODE register.

WZP_SHIPMENT_TYPE_NAME

Description: Localized name for dispatch types.

Column Label Description

row_id ... Internal unique ID.

shipment_key ... Dispatch type key.

text Text Localized name.

248

Developer Guide

Column Label Description

culture_name Culture Culture name.

culture_source ... Culture source from which this entry has
been created.

edited ... Edited flag.

WZP_SHIPMENT_TYPE_ORDER

Description: Link between the dispatch types and their applied channel types.

Column Label Description

row_id Unique identity of the
link.

Internal unique ID.

shipment_key Dispatch type key The key to the dispatch type that is linked to
a dispatch channel type by this entity.

order Channel order Channel order.

channel_type Foreign key to the channel entity. It must be
created in the custom domain register under
custom domain WZP-SC.

dispatcher_id Foreign key to wzp_dispatcher.

WZP_REMOTE_PRINT_TYPE

Description: The different constellations of remote print configurations.

Column Label Description

key Remote print type A configuration of a remote print

porto_category_key Foreign key to the porto_category entity. The
key must be created in the custom domain
register under custom domain WZP-MCAT.

returned_letter_hand- Foreign key to the returned_letter_handling

249

WorkZone Process 2022.0

Column Label Description

ling_key entity. The key must be created in the custom
domain register under custom domain WZP-
RLH.

urgency_level_key Foreign key to the urgency_level entity. The
key must be created in the custom domain
register under custom domain WZP-UL.

simplex_duplex_key Foreign key to the simplex_duplex entity. The
key must be created in the custom domain
register under custom domain WZP-SD.

print_color_option_key Foreign key to the print_color entity. The key
must be created in the custom domain
register under custom domain WZP-PCO.

envelope_type_key Foreign key to the envelope_type entity. The
key must be created in the custom domain
register under custom domain WZP-ET.

access_code Access code Access code. Access codes to be used must
be registered for the relevant users in the
ACCESS_CODE register.

order Display order Display order.

WZP_REMOTE_PRINT_TYPE_NAME

Description: Localized name table for WorkZone Process name.

Column Label Description

row_id Key Key

key Remote print type A configuration of a remote print.

text Name Name of the remote print configuration.

culture_
name

Language Language code.

250

Developer Guide

Column Label Description

culture_
source

Language source The source language of the entry.

edited Name edited Name edited.

WZP_SMARTPOST_LOG

Description: The SmartPost log

Column Label Description

row_id ... Internal unique ID.

instance_id Workflow instance ID Workflow instance ID.

approval Approve before send-
ing

Specifies that the document must be
approved before sending.

shipment_key Shipment type key Dispatch type key.

material_key Material key The selected material

remote_print_type_key Remote print type The selected remote print type.

delete_original Delete original after
sending.

Specifies that the original document should
be deleted after sending.

overall_status Overall status Message sending overall status.

overall_status_date Overall status date Date when the overall status was collected.

WZP_SMARTPOST_RECIPIENT

Description: RecipIents of the SmartPost dispatches.

Column Label Description

row_id Key Key

instance_id Workflow instance ID Workflow instance ID

251

WorkZone Process 2022.0

Column Label Description

record_key Record identity Record identity

recipient Contact identity Contact identity

role Role Rolle for aktdeltager.

shipment_channel Dispatched by Name of the shipping channel

external_id External ID The ID of the dispatch from the dispatch
channel

shipment_state Shipment state The state of the dispatch.

shipment_date Shipment date Dispatch date

WZP_SMARTPOST_ATTACHMENT

Description; Attachments to the SmartPost dispatches.

Column Label Description

row_id Key Key

instance_id Workflow instance ID Workflow instance ID

record_key Record identity Record identity

WZP_DISPATCHER

Description: Communication channel

Column Label

dispatcher_id Dispatcher ID Unique identifier for table entities.

guid DLL Guid A GUID to identify the associated DLL

description Dispatcher Dec-
sription

A description to explain the purpose of the
dispatcher

assembly Dispatcher Assembly The Assembly name

252

Developer Guide

Column Label

access_code Access code Access code. Access codes to be used
must be registered for the relevant users
in the ACCESS_CODE register.

WZP_DISPATCHER_NAME

Description: Localized name for dispatchers.

Column Label Description

row_id ... Internal unique iD.

dispatcher_id ... Dispatcher ID.

text Text Localized name.

culture_name Culture Culture name.

culture_source ... Culture source from which this entry has
been created.

edited ... Edited flag.

WZP_DISPATCHER_PARAMETER

Column Labe Description

row_id ID Unique ID.

dispatcher_id ID Unique ID.

name Parameter name The name of the parameter.

description Description Parameter description.

type Parameter type The parameter type (STRING, INTEGER,
PASSWORD).

mandatory Mandatory The parameter value is mandatory.

value Parameter value The value of the parameter.

253

WorkZone Process 2022.0

Enable Telerik Fiddler tracing
You can use Fiddler for debugging.

Enable Fiddler

1. Start Fiddler.

2. Click Tools > Options > Connections tab.

3. Select the Allow remote computers to connect check box and make sure that
the other check boxes are cleared.

4. If you made changes, restart Fiddler.

Uncomment Fiddler tracing in the web.config file

1. Close any web browsers.

2. Open the web.config file, and uncomment in the block that enables Fiddler tra-
cing (the <system.net> block).

<!-- Enable Fiddler tracing using reverse proxy -->

254

Developer Guide

<!--<system.net>

<defaultProxy>

<proxy bypassonlocal="False" usesystemdefault="True" proxy-
address="http://127.0.0.1:8888" />

</defaultProxy>

</system.net>-->

3. Save the file.

4. Recycle WzpSvc application pool in IIS.

Important: When you are done with the debugging, you must roll back the settings in
the Options dialog box in Fiddler, and comment out the Fiddler tracing block again.
Otherwise, WorkZone Process cannot run unless Fiddler is started, and other applic-
ations may get information from the database.

255

WorkZone Process 2022.0

Terms and conditions

Intellectual Property Rights

This document is the property of KMD. The data contained herein, in whole or in part, may
not be duplicated, used or disclosed outside the recipient for any purpose other than to con-
duct business and technical evaluation provided that this is approved by KMD according to
the agreement between KMD and the recipient. This restriction does not limit the recip-
ient’s right to use information contained in the data if it is obtained from another source
without restriction set out in the agreement between KMD and the recipient or by law.

Disclaimer

This document is intended for informational purposes only. Any information herein is
believed to be reliable. However, KMD assumes no responsibility for the accuracy of the
information. KMD reserves the right to change the document and the products described
without notice. KMD and the authors disclaim any and all liabilities.

Copyright © KMD A/S 2021. All rights reserved.

256

	Developer Guide for WorkZone Process 2022.0
	This guide
	Target groups
	Required skill level
	Related product documentation
	WorkZone links

	What's new
	New features in WorkZone Process 2022.0
	New OAuth2 properties
	Plugins
	SmartPost
	PowerShell script to start a SmartPost process
	OpenCase parameter

	Case activities
	Selector controls were upgraded
	Data model changes
	Case activity graphs available for workflows
	Integration
	New form types

	Architecture
	Overview
	WorkZone Overview

	WorkZone Process components
	Agent server installations
	Web server installations

	Host architecture
	The Workflow Host
	Persistence with timeouts
	The WCF Webservice
	Activity library
	Tracking Participants
	Base

	WZP Process Package Development
	Configure packages
	Example
	Form configuration
	Basic form configuration
	Example

	SmartTask form configuration
	Example

	Standard DataContextDefinition controls
	SharedDataContextDefinition
	Example
	Example

	Details Section control
	Example

	About plugins
	Extend packages using plugins

	Process designer
	Configure phase processes
	The phase process
	Building a phase process
	PhaseProcess activity
	PhaseContainer activity
	Edit workflow properties
	Phase activity
	SimplePhase activity
	UpdatePhase action
	UpdatePhase state
	Schedule activity
	IsStringNullOrWhiteSpace

	Configuring the activity placeholders
	CreateProcess
	SimpleUserTask
	Sequence

	Defining the process in the package.xml file
	The context section

	Deadline principles
	Deadline rules
	Phase events

	Configure sub processes
	Workflow process modelling
	Create a new process
	Standard activities

	Workflow development
	Activities
	Building custom activities
	Code Activities
	Phase activities
	Configuring phase names in multiple languages
	Configuring Phase Start Time and End Time logic
	Configuring phase events

	Testing workflows
	Workflow activity logging
	Tracking participants

	Tracking Profiles
	WorkflowInstanceRecords
	ActivityScheduledRecords
	ActivityStateRecords
	BookmarkResumptionRecords
	CancelRequestedRecords
	FaultPropagationQueries
	CustomTrackingRecords

	Other tracking records
	HostTrackingrecords
	WorkflowInstanceTerminateRecords
	WorkflowInstanceUnhandledexceptionRecord

	Document flow

	The forms concept
	Upgrade selector controls from 2016 to 2016 R2
	Forms
	Form view

	Init form
	Actor sequences in smart task Init forms
	Example: A wzp:selector with a wzp:sequence-mask-selector control for an Init...
	Example: A wzp:rollbackselector with a wzp:sequence-mask-selector control for...

	Init form container interface

	Edit form
	Definition:
	Default Edit form html file
	Default Edit form controller (JS) file
	Edit form container
	Smart tasks container
	Smart task container interface
	Interface of feed type
	Passing json data
	Smart task container initialization sequence
	Smart task metadata XML schema
	Response Templates
	Actions
	Forward
	Update

	New methods in the Smart Task Container Interface
	Properties
	Functions

	Case activity form
	Case activity container

	Containers
	Standard container
	Building custom form containers
	Changes in the interaction between Container and form controls
	Changes in the form controllers
	Support of custom containers

	Support for dirty marking in containers (Dirty Marking API)

	Controls
	Upgrade selector controls from 2016 to 2016 R2
	Form basic controls
	Editable controls in smarttasks
	About components
	The wzp.rollbackselector control
	Data context
	Examples

	Add filters in the wzp.controls
	Filtering options for the Init form
	Filtering options for the smarttask form

	Control specification
	Examples

	Controller and converter functions
	Сontroller structure
	Examples of an item converter
	Example of item converter for editing documents
	Example of item converter for editing actors
	Example of a result converter for editing documents
	Example of a result converter for editing actors
	Example of result converter for editing actors

	Wzp:rollbackselector-panel control
	Control specification
	Example

	Configure expanding/collapsing a wzp:rollbackselector section
	HTML
	JavaScript + Angular code

	Response Template population
	Response structure
	Populating actor changes
	Populating document changes

	Add a filter control in The <wzp-multi-selector> and <wzp:rollbackselector> p...

	Form localization
	Configuring POEditor to work with WZP forms localization resources
	Add or remove new string key in localization resources

	Processes overview
	Filtering
	Domain Restriction filters
	Register filter
	Default filter and filter precedence

	SmartPost
	Create a SmartPost dispatcher
	Compile and install the sample dispatcher
	Load the package
	Upgrade configuration
	Configure the dispatcher
	Test the sample dispatcher

	Add the sample dispatcher to a dispatch sequence
	Use the sample dispatcher
	Test the sample dispatcher

	SmartPost dispatcher classes, interfaces, and attributes
	Implement IDigitalPost interface
	Properties

	Implement IDigitalPostSenderConfigurator interface
	Methods
	Example

	Implement IDigitalPostSender interface
	Methods
	Properties
	Exception handling

	Implement IMessageShipmentHandle interface
	Properties

	Implement IMessageShipmentState interface
	Properties

	Use of ValidationResult class
	Properties
	Methods
	Example of definition and use of error message

	Implement DigitalPostDispatcherConfigurator class
	Properties

	Deploy a SmartPost dispatcher
	Configure SmartPost PartyIdentifierSources
	Design
	Factory pattern implementation
	Utility method(GetPartyIdentifier)
	Use of the GetPartyIdentifier method in the IdentifierSourceUtilities class

	Configuration of the GetPartyIdentifier method
	The standard configuration

	Configuration of a factory
	ODataPartyIdentifierSource
	Configuration
	A configuration example of the ODataPartyIdentifierSource

	Customized implementation

	Configure SmartPost ContactAddressSources
	Design
	Factory pattern implementation
	Utility method (GetContactAddressKeys)
	Use of the GetContactAddressKeys method in the IdentifierSourceUtilities class

	Configuration of the GetContactAddressKeys method
	Example: The standard configuration of the factory

	Configuration of a factory
	class=information_block> ODataContactAddressSource
	Configuration
	A configuration example of the ODataContactAddressSource

	Customized implementation

	Integration
	Start a SmartPost process using a script
	Example

	Web services
	Creating workflows
	Get available processes
	Get information for starting a process
	Get a form
	Start a process

	Workflow service
	Webservice
	Host
	Interface types
	WorkflowCreationData
	WorkflowStatus
	RunningWorkflowInformation
	WorkflowDescriptor
	WorkflowType

	OData actions
	WzpWorkflowInstance
	WzpUserTask
	Usage of oData custom actions
	Usage in C# using the Scanjour.Process.Odata.Client
	Usage in JavaScript

	Database
	Process configuration registers
	WZP_PACKAGE
	WZP_PROCESS
	WZP_WORKFLOW
	WZP_PROCESS_WORKFLOW
	WZP_PROCESS_PARAMETER
	WZP_SERVICE
	WZP_SERVICE_PARAMETER
	WZP_ASSEMBLY

	Process configuration tables
	WZP_PACKAGE
	WZP_PROCESS
	WZP_PROCESS_WORKFLOW
	WZP_ASSEMBLY
	WZP_PROCESS_NAME
	WZP_PROCESS_DESC
	WZP_PROCESS_PARAMETER
	WZP_SERVICE
	WZP_SERVICE_PARAMETER
	WZP_WORKFLOW
	WZP_WORKFLOW_CONTEXT

	Process forms registers
	WZP_FORM
	WZP_FORM_DATA
	WZP_FORM_ASSET
	WZP_WORKFLOW_FORM

	Process forms tables
	WZP_FORM
	WZP_FORM_VIEW
	WZP_FORM_CONTROLLER
	WZP_FORM_DATA
	WZP_WORKFLOW_FORM
	WZP_FORM_ASSET

	Process instance registers
	WZP_WORKFLOW_INSTANCE
	WZP_WORKFLOW_INSTANCE_ELAB
	WZP_LOCK_INSTANCE
	WZP_WORKFLOW_INSTANCE_RECORD
	WZP_WORKFLOW_LOG

	Process instance tables
	WZP_INSTANCE_ARGUMENT
	WZP_WORKFLOW_INSTANCE
	WZP_WORKFLOW_LOG
	WZP_WORKFLOW_STREAM
	WZP_INSTANCE_BOOKMARK
	WZP_WORKFLOW_INSTANCE_ELAB
	V_WZP_LOCK_INSTANCE
	V_WZP_WORKFLOW_INSTANCE_RECORD
	WZP_HISTORY
	WZP_WORKFLOW_PROFILE

	Process task registers
	WZP_USER_TASK
	WZP_OPEN_USER_TASK
	WZP_USER_TASK_ATTACHMENT
	WZP_USER_TASK_INSERT
	WZP_TASK_STATUS
	WZP_HISTORY
	WZP_PHASE

	Process task tables
	WZP_PHASE
	WZP_TASK_STATUS
	WZP_USER_TASK_TITLE
	WZP_USER_TASK_ATTACHMENT
	WZP_USER_TASK_RECORD
	WZP_USER_TASK
	V_WZP_OPEN_USER_TASK
	WZP_HISTORY
	WZP_HISTORY_DESC
	V_WZP_MY_OPEN_TASK
	V_WZP_MY_OU_OPEN_TASK
	V_WZP_TASK_ERROR

	Miscellaneous registers
	WZP_PROXY
	WZP_FILE_USER_RIGHT
	WZP_SETTINGS
	WZP_SEQUENCE_MASK
	WZP_PUSH_SUBSCRIPTION
	WZP_MAIL_NOTIFICATION

	Miscellaneous tables
	WZP_PROXY
	V_WZP_FILE_USER_RIGHT
	WZP_SETTINGS
	WZP_PUSH_SUBSCRIPTION
	WZP_SEQUENCE_MASK
	WZP_SEQUENCE_MASK_ITEM

	Case activity registers
	WZP_CASE_ACTIVITY
	WZP_CASE_ACTIVITY_HISTORY

	Case activity tables
	WZP_CASE_ACTIVITY
	WZP_CASE_ACTIVITY_TITLE
	WZP_CASE_ACTIVITY_HISTORY

	SmartPost registers
	WZP_IDENTIFIER_SOURCE
	WZP_EXCEPTION_CLASS
	WZP_EBOKS_MATERIAL
	WZP_NAME_EXTENSION
	WZP_EBOKS_SUBSCRIPTION
	WZP_SHIPMENT_TYPE
	WZP_SHIPMENT_TYPE_ORDER
	WZP_REMOTE_PRINT_TYPE
	WZP_SMARTPOST_LOG
	WZP_SMARTPOST_RECIPIENT
	WZP_SMARTPOST_ATTACHMENT
	WZP_DISPATCHER
	WZP_DISPATCHER_PARAMETER

	SmartPost tables
	WZP_FILE_EXTENSION
	WZP_IDENTIFIER_SOURCE
	WZP_EBOKS_MATERIAL
	WZP_EBOKS_MATERIAL_NAME
	WZP_NAME_EXTENSION
	WZP_EBOKS_SUBSRIPTION
	WZP_SHIPMENT_TYPE
	WZP_SHIPMENT_TYPE_NAME
	WZP_SHIPMENT_TYPE_ORDER
	WZP_REMOTE_PRINT_TYPE
	WZP_REMOTE_PRINT_TYPE_NAME
	WZP_SMARTPOST_LOG
	WZP_SMARTPOST_RECIPIENT
	WZP_SMARTPOST_ATTACHMENT
	WZP_DISPATCHER
	WZP_DISPATCHER_NAME
	WZP_DISPATCHER_PARAMETER

	Enable Telerik Fiddler tracing
	Enable Fiddler
	Uncomment Fiddler tracing in the web.config file

	Terms and conditions
	Intellectual Property Rights
	Disclaimer

